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SUMMARY

Humans are never exposed to a single chemical, but rather a wide array of environmental ex- 20

posures. As a result, a focus of research in the environmental health sciences has been on the
quantification of the effects of exposure to a mixture of pollutants. Such research on environ-
mental mixtures yields evidence of effects under more realistic exposure scenarios, leading to
regulatory policies that can be more protective of public health. As is now well-documented,
quantifying the health effects of environmental mixtures involves addressing several statisti- 25

cal challenges, including complex correlation structures among pollutant levels and potentially
complex multivariate expsoure-response relationships between exposure and health. A popular
approach to simultaneously address these challenges is a Bayesian semi-parametric Gaussian
process regression framework Bobb et al. (2015); Coull et al. (2015). This framework models
the exposure-response function with a Gaussian process and performs feature selection to effec- 30

tively reduce the dimension of the potentially high-dimensional exposure, while accounting for
confounders via a linear model. Because the framework was originally motivated by the need
to estimate effects in small to moderately sized cohort studies, the algorithms for model fitting
do not scale up well in big data settings, such as those encountered when interest focuses on
electronic health records or other administrative data. While there are some ad hoc solutions to 35

scale the framework up to big data settings, there is no theoretical guarantee on the inference
of the results. In this work, we propose a divide-and-conquer approach in which we split sam-
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ples, compute the posterior distribution, and then combine them using the generalized median.
Importantly, we provide theoretical guarantees for the convergence of the proposed posterior
computation to the posteriors from the original Gaussian process model derived from the full40

sample. We apply the proposed approach to estimate associations between a mixture of ambient
air pollutants and approximately 650,000 birthweights recorded in Massachusetts, USA during
2001-2012. Results suggest that elemental and organic carbon, markers of traffic pollution, as
well as total PM2.5 mass are negatively associated with birthweight in Massachusetts during
this period, while ozone levels and a marker of greenness (i.e. nature of an area) are positively45

associated with birthweights.

Some key words: Semi-parametric regression, Scalable Bayesian Inference, Median Posterior, Multi-Pollutant Mix-
tures.

1. INTRODUCTION

Ambient air pollution consists of a heterogeneous mixture of multiple chemical components,50

with these components being generated by different pollution sources. Therefore, quantification
of the health effects of this mixture can yield important evidence on the source-specific health
effects of air pollution, which has the potential to provide evidence to support targeted regulations
for ambient pollution levels.

As is now well-documented, there are several statistical challenges involved in estimating the55

health effects of multi-pollutant mixture. First, the relationship between health outcomes and
multiple pollutants can be complex, potentially involving non-linear and non-additive effects.
Second, pollutant levels can be highly correlated, but only some may impact health. Therefore,
models inducing sparsity are often advantageous. Feature engineering, such as basis expansions
to allow interaction terms, can lead to high dimensional inference. Alternatively, parametric mod-60

els can be used, however they require the analyst to impose a functional form, which can yield
biased estimates in the likely case that the model is miss-specified.

Finally, large data sets containing information on pollution exposure and population charac-
teristics have become increasingly available. These datasets allow for the estimation of small but
significant effects. However, many models used in this context do not scale well with sample size65

and feature dimension. Efficient methods are needed that can take advantage of massive data and
yield results which can be easily interpreted, and which can be computed in a relatively short
time.

Several methods address the issues discussed above (Billionnet et al., 2012). A common ap-
proach to modelling the complex relationship between pollutants and outcomes is to use flexible70

models such as random forests which have been shown to be consistent (Scornet et al., 2015),
or universal approximators, such as neural networks (Schmidhuber, 2015). These are useful but
yield results which are hard to interpret: one cannot report the directionality or magnitude of
the feature effect on the outcome. In this context, our interest lies in both prediction as well
as interpretation. Another possible way to incorporate flexible multi-pollutant modelling is by75

clustering pollution-exposure levels and including clusters as covariates in parametric models.
This approach essentially stratifies exposure levels which results in important loss of informa-
tion. It ultimately forces the analyst to adapt the question of interest into one that can be solved
by available tools, instead of tackling the relevant questions. A common approach to address
the high-dimensionality of multi-pollutants effects is to posit a generalized additive model. This80

allows one to estimate the association between a health outcome and a single pollutant, which
can be repeated for every exposure of interest (Stieb et al., 2012). Flexible modelling such as
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quantile regression can be employed to deal with outliers and account for possible differences in
associations across the health outcome (Fong et al., 2019b). However, the clear downside is that
incorporating multi-pollutant mixtures quickly makes this approach computationally infeasible. 85

Alternatively, generalized linear models can be used to evaluate the associations of interest, with
the downside of imposing a functional form (Gaskins et al., 2019). To enforce sparsity on the
feature space, variable selection methods such as least absolute shrinkage and selection operator
(LASSO) penalty can be used (Tibshirani, 1996), however to use such methods one must spec-
ify a parametric model which brings us back to the likely misspecification scenario, in which 90

estimated associations and causal effects may be biased.
A popular approach to simultaneously addressing these issues on small-scale data is the use of

semi-parametric Gaussian process model, often referred to as Bayesian kernel machine regres-
sion (BKMR)(Bobb et al., 2015; Coull et al., 2015). The pollutants-health outcome relationship
is modelled through a Gaussian process, which allows for a flexible functional relationship be- 95

tween the pollutants and the outcome of interest. The model allows for feature selection among
the pollutants to discard those with no estimable health effect and to account for high correlation
among those with and without a health effect. This framework allows the incorporation of linear
effects of baseline covariates, yielding an interpretable model. Even though this framework is
frequently employed in the multi-pollutant context, large datasets make it prohibitively slow as 100

it involves Bayesian posterior calculation. There are some ad hoc solutions, which have been
shown to work well in practice in certain simulated settings (Bobb et al., 2015). However, there
is no theoretical guarantee regarding the inference of the results. Here, we propose a divide-
and-conquer approach in which we split samples, compute the posterior distribution, and then
combine the smaller samples using the generalized median. This method allows capturing small 105

effects from large datasets in little time. We provide theoretical guarantees for the convergence
of the Gaussian process, flexible to different function spaces.

2. METHOD

2·1. Semi-parametric Regression
Suppose we observe a sample of n independent, identically distributed (i.i.d.) random vec- 110

tors Sn = {Di}ni=1, whereDi = (Yi,Xi,Zi) ∼ P0 withXi ∈ X ⊂ Rp a vector of possible con-
founders, andZi ∈ Z ⊂ Rq a vector of exposure to pollution constituents. We will assume health
outcome Y has a linear relationship with confoundersX and a non-parametric relationship with
exposure to pollution Z. In particular, for Di we assume the following semi-parametric relation-
ship: 115

Yi = X>i β
0 + h0(Zi) + ei, (1)

where ei ∼ N (0, σ2), and h0 : Z 7→ R is an unknown function which we allow to incorporate
non-linearity and interaction among the pollutants. We require h0 to be in an α-Holder space, or
to be infinitely differentiable. We formalize this in Section 3.

2·2. Prior Specification 120

To perform inference on h0, we will use a re-scaled Gaussian process prior (Williams & Ras-
mussen, 2019). In particular, we will use a squared exponential process equipped with an inverse
Gamma bandwidth. That is, we will use prior

h0(Z) ∼ N (0,K),
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where Cov[Z,Z ′] = K(Z,Z ′; ρ) = exp
{
− 1
ρ2q
‖Z −Z ′‖22

}
, and ρ is a Gamma distributed ran-

dom variable. We choose this kernel as it is flexible enough to approximate smooth functions,125

more so when the bandwidth parameter ρ can be estimated from the data.
Alternatively, we will augment the Gaussian kernel to allow for sparse solutions on the number

of pollutants which contribute to the outcome (Bobb et al., 2015). Let the augmented co-variance
function be Cov[Z,Z ′] = K(Z,Z ′; r) = exp{−

∑q
j=1 rj(Zj − Z ′j)2}. To select pollutants we

assume a ”slab-and-spike” prior on the selection variables rj ∼ gr|δ, with130

gr|δ(r, δ) = δf1(r) + (1− δ)f0, δ ∼ Bernoulli(π),

where f1 has support on R+ and f0 is the point mass at 0. The random variables δj can then be
read as the indicators for whether pollutant Zj is relevant to the health outcome. Their relevance
is measured by the mean E[δj ] = πj . Finally, for simplicity we will assume an improper prior on
the linear component: β ∼ 1. This linear component will capture the effects of confounders. We
further use a Gamma prior distribution for the error term variance σ2.135

2·3. Estimation
Let h ≡ (h0(Z1), . . . , h0(Zn))>, Liu et al. (2007) have shown that model (1) can be ex-

pressed as

Yi ∼ N (h0(Zi) +XT
i β

0, σ2), h ∼ N (0, τK).

This will allow us to simplify our inference procedure and split the problem into tractable pos-
terior estimation (Bobb et al., 2015) for each component of interest. In particular, we can use140

Gibbs steps to sample the conditionals for β, σ2 and h analytically, also letting λ = τ
σ2 , we use

a Metropolis-Hastings step, the full set of posteriors is given in equation (2).

β | σ2, λ, r,Y ∼ N
(
VβX

>V −1
λ,Z,rY , σ

2Vβ

)
,

σ2 | β, λ, r,Y ∼ Gamma
(
ασ +

n

2
, bσ +

1

2
WSSβ,λ,r

)
,

h | β, σ2, λ, r,Y ,X,Z ∼ N
(
λKZ,rV

−1
λ,Z,r(Y −Xβ), σ2λKZ,rV

−1
λ,Z,r

)
,

f(λ | β, r, δ,Y ,X,Z) ∝
∣∣∣V −1
λ,Z,r

∣∣∣−1/2
exp

{
− 1

2σ2
WSSβ,λ,r

}
Gamma(λ | aλ, bλ).

(2)

where Vλ,Z,r = In + λKZ,r,Vβ = (X>V −1
λ,Z,rX)−1,WSSβ,λ,r = (Y −Xβ)>V −1

λ,Z,r(Y −
Xβ).145

To perform inference for functions of interest in (2), we will use Markov Chain Monte Carlo
(MCMC) techniques. Furthermore, even though function h has a closed form posterior, large
samples will require large matrix inversions. As sample size increases, posterior sampling be-
comes increasingly challenging. This is particularly true for sampling h, as the posterior Gaus-
sian process is n-dimensional.150

With an infinite number of samples, MCMC is known to converge to the true posterior. How-
ever, in practice the number of samples for the burn-in state required from the true posterior
significantly increases with dimension.

This problem is substantially worse when sampling from the Gaussian process posterior as the
dimension is the sample size. The computational cost for each iteration isO(n3), since to sample155

from the posterior of h we need to compute an inverse of an n× n kernel matrix indicated in
(2). This renders the method prohibitively slow for real applications on large data sets. On the
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other hand given the epidemiological context, these are precisely the data sets needed as they
can actually shed light on the small effects of pollutants on health outcomes. This predicament
motivates the development of a fast version of inference for (2), and particularly for h. 160

2·4. Fast Inference on Posteriors via Sub-sampling
In order to make posterior sampling computationally feasible, we propose a sample splitting

technique which is guaranteed to satisfy the needed theoretical properties. Our approach consists
of computing multiple noisy versions of the posteriors we are interested in, and using the median
of these as a proxy for the full data posterior. 165

First, we randomly split the entire data set into several disjoint subsets with roughly equal
sample size. Let SKk=1 denote a random partition of Sn into K disjoint subsets of size nk = n/K
with index sets {Ik}Kk=1. Then for each subset Sk, we run a modified version of the estimation
approach described in Section 2·3 using sub-sampling sketching matrices Sk ∈ Rn×nk . This will
yield K posterior distributions for each parameter and function in (2). 170

We proceed as follows: Let {p1, . . . , pn} be drawn uniformly from the n-dimensional identity
matrix In with indexes of columns as in Ik, and define sketching matrix Sk as a matrix with nk
columns of the form Sk,i =

√
K · pi. Using Sk we denote by Ṽk and Ãk, any vector and matrix

transformation respectively as Ṽk = S>k V , Ãk = S>k ASk. We can then redefine model (1) for
sample Sk as 175

Ỹk ∼ N(h̃k + X̃(k)β, σ2SkS
>
k ), h̃k ∼ N(0, τK̃(k)). (3)

We then implement our inference from Section 2·3 to the above by using Ṽ (k)
λ,Z,r, Ṽ

(k)
β =

(X̃>k (Ṽ
(k)
λ,Z,r)

−1X̃k)
−1, W̃SS

(k)

β,λ,r = (Ỹk − X̃kβ)>(Ṽ
(k)
λ,Z,r)

−1(Ỹk − X̃kβ) in (2) and sample
from each of the K posteriors.

For any i.i.d. random vectorsD1, . . . , Dn ∼ P0, let P0 ≡ Pθ0 be indexed by θ0 ∈ Θ. Bayesian 180

inference usually consists of specifying a prior distribution Π for θ0, and using sample Sn to
compute a posterior distribution for θ0 defined as

Πn(θ | Sn) ≡
∏n
i=1 pθ(Di)Π(θ)∫

Θ

∏n
i=1 pθ(Di)Π(θ)

.

Note that this definition is general enough that θ can be any parameter in (2) as well as function
h0, in which case prior Π(θ) is a Gaussian process. Thus, we compute Πk(θ | Ik) k = 1, . . . ,K
for each split and each parameter of interest. Naturally, posterior Πk(θ | Ik) will be a noisy 185

approximation of Πn(θ | Sn) we combine each Πk using the geometric median. To formalize
this, we first define the geometric median, which is a multi-dimension generalization of the
univariate median (Minsker, 2015).

To construct the geometric median posterior, we will use K posteriors Πk(θ | Ik) ∈ F where
F = {f : A 7→ R, f ∈ H, ‖f‖H =

√
〈f, f〉 ≤ 1}, then define metric ‖ · ‖F as 190

‖G1 −G2‖F = sup
f∈F

∣∣∣∣∫
A
f(x)d(G1 −G2)(x)

∣∣∣∣ ,
and define the geometric median Πn as

Πn = argmin
Π∈F

K∑
k=1

‖Π−Πk‖F (4)
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As the univariate version, the geometric median Πn is robust to outlier observations, meaning
that our estimation procedure will preserve consistency on a finite sample within a reasonable
number of outliers present. Next, the convergence rate will be in terms of nk, however this rate195

improves geometrically with K with respect to the rate at which the K estimators are weakly
concentrated around the true parameter (Minsker et al., 2017).

One way to estimate (4) numerically, is through the barycenter of subset posterior distributions
in the Wasserstein space of probability measures (Srivastava et al., 2018). We first recall the
definition of Wasserstein space. Let (Θ, ρ) be a metric space which is completely separable, and200

P (Θ) denote the space of all probability measures on Θ with finite first and second moments.
Then the Wasserstein space of order 2 is defined as:

P2(Θ) := {µ ∈ P (Θ) :

∫
Θ
ρ2(θ0, θ)µ(dθ) <∞}, (5)

where θ0 ∈ Θ and the space does not depend on θ0. In our method, this Wasserstein space of
order 2 is defined using Euclidean metric ρ. Now let µ, ν ∈ P2(Θ) and Π(µ, ν) be the set of all205

probability measures on Θ×Θ with marginals µ, ν,the Wasserstein distance of order 2 between
µ and ν is defined as:

W2(µ, ν) = ( inf
π∈π(µ,ν)

∫
Θ×Θ

ρ2(x, y)dπ(x, y))
1
2 . (6)

Suppose probability measures Π1, . . . ,ΠK are in P2(Θ), and we use Euclidean metric as the
metric ρ, then the barycenter of a collection Π1, . . . ,ΠK becomes:210

Πn = argmin
Π

K∑
k=1

W 2(Π,Πk), (7)

In fact, this barycenter Πn is the geometric median in the Wasserstein space. Thus, we can con-
sider finding the posterior geometric median function of the subset posterior probability measure
in the Wasserstein space.

As the median function Πn is generally analytically intractable, an achievable solution is to215

estimate Πn from samples of subsets posteriors. We can approximate the median function by
assuming that subset posterior distributions are empirical measures and their atoms can be simu-
lated from the subset posteriors by a sampler (Srivastava et al., 2015). Let {θk1, . . . ,θkN} be N
samples of parameters θ obtained from subset posterior distribution Π

(k)
n . In our method, sam-

ples can be directly generated from subsets posteriors by using an MCMC sampler , then we can220

approximate the Π
(k)
n by the empirical measure corresponding with {θk1, . . . ,θkN}, which is

defined as:

Π̂(k)
n (· ) =

N∑
i=1

1

N
δθki(· ), (k = 1, . . . ,K) (8)

where δθki(· ) is the Dirac measure concentrated at θki. In order to approximate the subset pos-
terior accurately, we need to make N large enough. Then the empirical probability measure of225

median function Π̂n,I can be approximated by estimating the geometric median of the empirical
probability measure of subset posteriors. Using samples from subsets posteriors, the empirical
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probability measure of the median function is defined as:

Π̂n,I(· ) =

K∑
k=1

N∑
i=1

akiδθki(· ), 0 ≤ aki ≤ 1,

K∑
k=1

N∑
i=1

aki = 1 (9)

where aki are unknown weights of atoms. Here the problem of combing subset posteriors to 230

give a problem measure is switched to estimating aki in (9) for all the atoms across all subset
posteriors. Fortunately, aki can be estimated by solving the linear program in (7) with posterior
distributions restricted to atom forms in (8) and (9). There are several different algorithms, such
as the entropy-smoothed sub-gradient Sinkhorn algorithm developed by Cuturi & Doucet (2014)
and non-smooth optimization algorithm developed by Carlier et al. (2015). We use an efficient 235

algorithm developed by Srivastava et al. (2018), which is summarized as Algorithm 1.

Algorithm 1. Fast Posterior Inference Via Sub-sampling.

REQUIRE Observed sample Sn = {Di}ni=1, subset number K, parameter sample size N
Randomly partition Sn into K subsets SKk=1 with size nk
For Sk ∈ SKk=1 do

1. Get index set Ik for Sk
2. Get sub-sampling sketching matrix Sk
3. Run MCMC sampling on modified model described as (2) and (3) to
generating parameter samples {θk1, . . . ,θkN}

Solve the linear program in (7) with (8)-(9)

RETURN empirical approximation posterior median function Π̂n,I

Algorithm 1 provides a sample splitting approach to decrease computational complexity for
posterior inference. Sampling β, σ2, λ and h requires computing K, and inverting Vλ,Z,r, this
translates into O(n2q), O(n3) operations respectively per iteration. For λ we also need to com- 240

pute |Vλ,Z,r| which is O(n3). Bobb et al. (2015) recommend using at least 104 iterations, which
translates into O(104n3) operations (assuming q << n). There is a clear trade-off between a
large number of splits K which decreases computational complexity, and using the whole sam-
ple K = 1 which yields better inference. For example, choosing K = n1/2 yields a computa-
tional complexity of O(104n3/2) for Algorithm 1. Next in Section 3 we discuss the posterior 245

convergence rate and its dependence on the number of splits in detail.

3. THEORETICAL RESULTS

In this section we go over the assumptions needed for our theoretical results, state our main
theorem and discuss its implications. Our results focus on estimation of h0 as this is the main
function of interest and our main contribution. We first assume that the confounder and pollution 250

exposure space X , Z respectively are compact bounded sets. This is easily satisfied in practice.
Next we define two function spaces. Letting α > 0, we define Cα[0, 1]q to be the Holder space

of smooth functions h : [0, 1]q 7→ R which have uniformly bounded derivatives up to bαc, and
the highest partial derivatives are Lipschitz order α− bαc. More precisely, we define the vector
of q integers as v = (v1, . . . , vq) and 255

Dvg(z) =
∂(
∑

i
vi)g(z)

∂zv11 , . . . , ∂z
vq
q
.
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Then for function h we define

‖h‖α = max∑
i
vi≤bαc

sup
Dvg(z)

+ max∑
i
vi=bαc

sup
|Dvg(z)−Dvg(z′)|
‖z − z′‖α−bαc

, forz 6= z′.

With the above we say that

Cα[0, 1]q =

{
h : [0, 1]q 7→ R

∣∣∣∣‖h‖α < M

}
(Vaart, 1996).

Note that Cα[0, 1]q might be too large of a space as it is highly flexible in terms of differ-
entiability restrictions. In light of this, if we only consider smooth functions, we introduce the260

following space.
Let the Fourier transform be ĥ(λ) = 1/(2π)q

∫
ei(λ,t)h(t)dt and define

Aγ,r(Rq) =

{
h : Rq 7→ R

∣∣∣∣ ∫ eγ‖λ‖
r |ĥ(λ)|2dλ <∞

}
.

SetAγ,r(Rq) contains infinitely differentiable functions which are increasingly smooth as γ or r
increase (van der Vaart & van Zanten, 2009).

THEOREM 1. Let δ0(h) be the Dirac measure concentrated at h0. For any δ ∈ (0, 1), there265

exists a constant C1 such that if we choose the number of splits K ≤ C1 log 1/δ, then with a
probability of at least 1− δ, we have

‖Π̂n,g − δ0(h0)‖F ≤


C2(n/δ)

−
(

α
2α+q

)
(log(n/δ))

(
4α+q
4α+2q

)
if h0 ∈ Cα[0, 1]q,

C3(n/δ)−
1
2 (log(n/δ))(q+1+q/(2r)) if h0 ∈ Aγ,r(Rq) and r < 2,

C3(n/δ)−
1
2 (log(n/δ))(q+1) if h0 ∈ Aγ,r(Rq) and r ≥ 2,

where C2, C3 are sufficiently large constants.

The proof follows from results on convergence of the posterior median and scaled squared
exponential Gaussian process properties. We defer the proof to Appendix A. The rate in Theorem270

1 is achieved for all levels of regularity α simultaneously. If h0 ∈ Cα[0, 1]q, then the adaptive
rate is Õ

(
(n/δ)−(α/(2α+q))

)
, however further assuming h0 is infinitely differentiable, then h0 ∈

Aγ,r(Rq) and we recover the usual Õ
(
n−1/2

)
rate. Intuitively, understanding α as the number of

derivatives of h0, this n−1/2 rate is obtained letting α→∞. Theorem 1 sheds light into the trade-
off between choosing the optimal number of splits K: large K negatively impacts the statistical275

rate as it slows down convergence, however it helps with respect to computation complexity.
Finally, dimension q affects the rate on a logarithmic scale if h0 is infinitely differentiable; in the
case that h0 ∈ Cα[0, 1]q then q has a larger effect in the rate. This trade-off is further illustrated
in Section 4.

4. SIMULATION RESULTS280

To study our method’s empirical performance in a finite sample we evaluated it in several simu-
lation settings. The simulated data is generated with the following procedure. We generated a data
set with n observations, Sn = {Di}ni=1, Di = (yi, xi, zi), where zi = (zi1, . . . , ziq)

> is the pro-
file for observation i with q mixture components. xi is a confounder of the mixture profile gen-
erated by xi ∼ N(3 cos(zi1), 2). The outcomes were generated by yi ∼ N(βxi + h0(zi), σ

2).285

We considered q = 4 total number of mixture components, and each exposure vector {zi}ni=1



9

was obtained by sampling each component zi1, . . . ,zi4 from the standard normal distribution
N(0, 1).

We considered the mixture-response function h0(· ) as a non-linear and non-additive function
of only (zi1, zi2) with an interaction. In particular, let φ(x) = 1/(1 + e−x), we generated h as

h0(zi) = 4φ

(
5

6

{
zi1 + zi2 +

1

2
zi1zi2

})
.

We set β0 = 2, and σ2 = 0.5. We considered the total number of sam-
ples n ∈ {512, 1024, 2048, 4096}, and the number of splits K = nt, with t ∈ 290

{0, 0.05, 0.1, 0.15, . . . , 0.7}. Note that for n = 512, the subset sample size is not enough
for preforming the MCMC sampler when t = 0.7. Therefore, simulation under the setting
wasn’t performed. Each simulation setting is replicated 300 times. All computations are
performed on a server with 2.6GHz 10 core compute nodes, with 15000MB memory.

Figure 1 and 2 show the method performance for approximating h0 by the median poste- 295

rior. To evaluate performance, we ran a linear regression of the estimated ĥ on true h0, i.e.
h0(zi) = γ0 + γ1ĥ(zi) + εi i = 1, . . . , n and plot the estimated slope γ̂1, intercept γ̂0 and R2

while varying number of sample splits K. A good ĥ(· ) would yield γ̂0 = 0, γ̂1 = 1, R2 = 1 as
h0(z) ≈ ĥ(z). As the figure shows, as the number of splits increases with t, inference on h0

starts to lose precision. This is natural; although the median geometrically improves rate nk, as 300

splits increase each posterior sample becomes noisier. However, near t = 1/2 the median per-
formance for ĥ is close to performance when the entire sample is used (t = 0) as measured by
γ̂0, γ̂1, R

2, with significant computation time gains. Figure 2 shows computing time for infer-
ence on h0 through the posterior median. There is a clear trade-off between sampling from a
high dimensional Gaussian process posterior of n samples, and a large number of data splits 305

which require almost equivalent computation power to sample. Results suggest that splits with
t ∈ [1/4, 1/2] decrease computational burden significantly. On the other hand Figure 1,2 and
theoretical results in Section 3 suggest that t ≤ 1/2 offers a good approximations to the full-data
posterior. Theoretical and empirical results suggest choosing t ∈ [1/4, 1/2], with t→ 1/2 as n
increases will optimize the computation-cost vs. precision trade-off. 310

Fig. 1: Regression summary results for h = γ0 + γ1ĥ across different sample size
n and data set splits. The setting of number of subsets are described above as nt.
We show (A) intercept: γ̂0, (B) slope: γ̂1.
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Fig. 2: (A)Regression R2 for h = γ0 + γ1ĥ and (B) Logarithmic runtime for fast
BKMR across different sample size n and data set splits. The setting of number of
subsets are described above as nt.

5. A TOXICOLOGY STUDY OF MAJOR PARTICULATE MATTER CONSTITUENTS ON
BIRTH-WEIGHT IN MASSACHUSETTS

To further evaluate our method on a real data set, we consider a study of major particulate
matter constituents and birth-weight, in which preliminary data from 907,766 newborns in Mas-
sachusetts from January 2001 to 31 December 2012 were collected Fong et al. (2019a). After315

excluding the observation records with missing data, there were n = 685, 857 observations used
for analysis. We treated normalized Ozone , NDVI, PM2.5, EC, OC, nitrate, and sulfate as mix-
ture components for non-parametric parts, and other variables such as maternal characteristics,
as confounders. We randomly split the sample to K = 686 (using t ≈ 1/2) different splits, each
split contains ≈1000 samples. For each split, we ran the MCMC sampler for 1000 iterations320

after 1 000 burn in iterations, and every fifth sample was kept for further inference, thus we have
parameter sample sizeN = 200 for each split. Further details on the confounders included in the
analysis can be found in Appendix B.

Figure 3 shows univariate estimated effects for each major constituent and PM2.5 on birth
weight with other constituents fixed at their median. The figure suggests that for the PM2.5,325

EC, and OC terms, increasing values of the constituents are associated with decreasing values
of birth-weight. On the other hand, we have the Ozone, nitrate, and NDVI terms, for which
increasing values are associated with increasing birth-weight. Furthermore, it seems there is no
association between birth-weight and maternal exposure to sulfate. Among negatively associated
constituents, EC and remaining PM2.5 constituents have stronger linear negative associations330

compared to OC. Among positive associations, NDVI and Ozone seem to have a strong linear
relationship with birth-weight. However, for nitrate, when its concentration is lower than +1
standard deviation, it is positively associated with birth weight increase, whereas when it is
above the mean level over 1 standard deviation, it is negatively associated with birth-weight.
This suggests an effect modification type of relationship.335

Figure 4 investigates the bivariate relationship of two major constituents with birth weight,
with other constituents fixed at their median levels. The figure suggests different levels of non-
linear relationships between constituent concentrations and birth weight. Unlike the pattern of
sulfate shown in figure 3, there exists a strong inverted u-shaped relationship between sulfate
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and mean birth-weight when nitrate concentration is at around -1 standard deviation. A similar 340

relationship is visible between nitrate and mean birth-weight when sulfate concentration is higher
than +0.5 standard deviation. Moreover, the PM2.5 shows no association with birth weight when
its concentration is lower than 0 standard deviation, with sulfate concentration lower than -1
standard deviation.

Fig. 3: Univariate estimated effects on birth-weight per standard deviation increase
in PM2.5, EC, OC, nitrate, sulfate, NDVI, and Ozone. 95% confidence bands of es-
timates are in gray. All of the other mixture components are fixed to 50th percentile
level when investigating single mixture effect on birth-weight. We show h(Z): dif-
ference of birth-weight comparing to the mean birth-weight of samples in grams;
Pollutant(Z): change of each of the major constituents with the measure of standard
deviation of that constituent.

6. DISCUSSION 345

As industry and governments invest in new technologies that ameliorate their environmental
and pollution impact, the need to quantify the effects of pollution on health is prioritized. In par-
allel, electronic data registries such as the Massachusetts birth weights data set are increasingly
common and larger. These rich data sets allow measuring small, highly non-linear effects of
pollutant mixtures that impact public health. To the best of our knowledge, we propose the first 350

semi-parametric Gaussian process regression framework that can be used to estimate effects us-
ing large datasets. In particular, we model the pollutant-health outcome surface with a Gaussian
process that allows for feature selection. Additionally, we use a linear component to incorporate
confounder effects. Previous approaches for similar analysis had to either assume a parametric
relationship or use a single pollutant per regression to estimate effects of interest (Fong et al., 355

2019a).
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Fig. 4: Bivariate estimated effects on birthweight per standard deviation increase
between PM2.5, EC, OC, nitrate, sulfate, NDVI, and Ozone. All of the other mixture
components are fixed to 50th percentile level when investigating bivariate mixture
effects on birthweight. We show h(zi, zj): difference of birth-weight compared to
the mean birth-weight of samples in grams; Pollutant(zi) and Pollutant(zj): change
of each of the major constituents with the measure of standard deviation of that
constituent.

To ameliorate the computational burden of computing the Bayesian posteriors of the Gaussian
process, we propose a divide-and-conquer approach. Our method consists of splitting samples
into subsets, computing the posterior distribution for each data split, and then combining the
samples using a generalized median based on the Wasserstein distance (Minsker et al., 2017).360

We tailor the method to incorporate a squared exponential kernel and provide theoretical guar-
antees for the convergence of the Gaussian process for this choice of kernel. Our convergence
results accommodate different assumptions for the underlying space of the true feature-response
function. We provide theoretical and empirical results which illustrate a trade-off for the optimal
number of splits. As the number of data splits increases, the posterior computation of the small365

data subsets will be faster; however, these posteriors will be noisy. In other words, there is a ten-
sion between computational cost and obtaining precise estimates. We propose using K = n1/2

sample splits to efficiently approximate the posterior in a relatively short time. To illustrate the
benefit of our method, we analyze the impact of several individual pollution constituents on Mas-
sachusetts birth weights using a large dataset. Given our results, we believe this method will be370
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highly useful in answering similar questions which require high-dimensional inference to ana-
lyze the complex relationships underlying environmental health.
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GASKINS, A. J., M ÍNGUEZ-ALARCÓN, L., FONG, K. C., ABU AWAD, Y., DI, Q., CHAVARRO, J. E., FORD, J. B.,

COULL, B. A., SCHWARTZ, J., KLOOG, I., ATTAMAN, J., HAUSER, R. & LADEN, F. (2019). Supplemental
folate and the relationship between traffic-related air pollution and livebirth among women undergoing assisted
reproduction. American journal of epidemiology 188, 1595–1604.395

LIU, D., LIN, X. & GHOSH, D. (2007). Semiparametric regression of multidimensional genetic pathway data:
Least-squares kernel machines and linear mixed models. Biometrics 63, 1079–1088.

MINSKER, S. (2015). Geometric median and robust estimation in banach spaces. Bernoulli : official journal of the
Bernoulli Society for Mathematical Statistics and Probability 21, 2308–2335.

MINSKER, S., SRIVASTAVA, S., LIN, L. & DUNSON, D. (2017). Robust and scalable bayes via a median of subset400

posterior measures. Journal Of Machine Learning Research 18.
SCHMIDHUBER, J. (2015). Deep learning in neural networks: An overview. Neural networks 61, 85–117.
SCORNET, E., BIAU, G. & VERT, J.-P. (2015). Consistency of random forests. The Annals of statistics 43, 1716–

1741.
SRIVASTAVA, S., CEVHER, V., TRAN DINH, Q. & DUNSON, D. B. (2015). Wasp: Scalable bayes via barycenters of405

subset posteriors. Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics
38, 912 – 920.

SRIVASTAVA, S., LI, C. & DUNSON, D. B. (2018). Scalable bayes via barycenter in wasserstein space. J. Mach.
Learn. Res. 19, 312–346.

STIEB, D. M., CHEN, L., ESHOUL, M. & JUDEK, S. (2012). Ambient air pollution, birth weight and preterm birth:410

A systematic review and meta-analysis. Environmental research 117, 100–111.
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B, Methodological 58, 267–288.
VAART, VAN DER, A. & ZANTEN, VAN, J. (2008). Rates of contraction of posterior distributions based on gaussian

process priors. Annals of Statistics .415

VAART, A. W. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics. Springer Series
in Statistics. New York, NY: Springer New York : Imprint: Springer.

VAN DER VAART, A. W. & VAN ZANTEN, J. H. (2009). Adaptive bayesian estimation using a gaussian random field
with inverse gamma bandwidth. The Annals of Statistics 37, 2655–2675.

WILLIAMS, C. K. I. & RASMUSSEN, C. E. (2019). Gaussian Processes for Machine Learning. Adaptive Compu-420

tation and Machine Learning series. The MIT Press.



1

Supplementary material to

Scalable Gaussian Process Regression Via Median Posterior Inference for Estimating
Multi-Pollutant Mixture Health Effects

SUMMARY 425

This document contains the supplementary material to the paper “Scalable Gaussian Process
Regression Via Median Posterior Inference for Estimating Multi-Pollutant Mixture Health Ef-
fects”.

A. PROOF OF THEOREM 1
The proof for Theorem 1 uses the following results. 430

Assumption 1. Let A be a random variable with positive support, the distribution of A has a
Lebesgue density g such that

C1a
p exp{−D1a

d1 logd2 a} ≤ g(a) ≤ C2a
d1 exp{−D2a

d1 logd2 a},

for every large enough a > 0 and constants C1, D1, C2, D2 > 0 and d1, d2 ≥ 0.

Assumption 2. Let H be a Gaussian field, the associated spectral measure µ satisfies∫
eδ‖λ‖µ(δλ) <∞,

for some δ > 0. We say that H has subexponential tails. 435

Assumption 3. Let H be a Gaussian field, H possesses a Lebesgue density f such that a 7→
f(aλ) is decreasing on (0,∞) for every, λ ∈ Rq.

For a random variableA satisfying Assumption 1, letHA = {HAz : z ∈ [0, 1]q} be a centered
rescaled Gaussian process. We consider the Borel measurable map in C[0, 1]q, equipped with the
uniform norm ‖ · ‖∞. 440

THEOREM 2 (THEOREM 3.1 IN (VAN DER VAART & VAN ZANTEN, 2009)). Let H be a
centered homogeneous Gaussian field which satisfies Assumptions 2, 3, then there exist Borel
measurable subsets Bn of C[0, 1]q and for sufficiently large n and big enough constant C4

logN (ε̄n, Bn, ‖ · ‖∞) ≤ nε̄2n,

P
(
HA /∈ Bn

)
≤ e−4nε2n ,

P
(
‖HA − h0‖∞ < εn

)
≥ e−nε2n ,

(10)

where 445r if h0 ∈ Cα[0, 1]q for α > 0 then εn = n−α/(2α+q) (log n)κ1 , ε̄ = C4εn (log n)κ2 , for κ1 =
((1 + q ∨ d2)/(2 + q/α) and κ2 = (1 + q − d2)/2,r if h0 is the restriction of a function in Aγ,r(Rq) to [0, 1]q with spectral density satisfying
|f(λ)| ≥ C3 exp{−D3‖λ‖ν} for some constants C3, D3, ν > 0, then ε̄n = εn(log n)(q+1)/2

and εn = C4n
− 1

2 (log n)(q+1)/2 if r ≥ ν, and εn = C4n
− 1

2 (log n)((q+1)/2+q/(2r)) if r < 2. 450

THEOREM 3 (THEOREM 2.2 IN (VAN DER VAART & VAN ZANTEN, 2009)). Let
H = {HZ : z ∈ [0, 1]q} be the centered Gaussian process, with covariance function
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E[HZHZ′ ] = exp{−‖Z −Z ′‖2n}. Also let σ be Gamma-distributed random variable. We
consider H = {HσZ : z ∈ [0, 1]q} as a prior distribution for h0. Then for every large enough
M ,455

Πh,σ (‖h− h0‖n + |σ − σ0| ≥Mε|Z1, . . . ,Zn)→ 0 as n→∞,

where

ε =


n
−
(

α
2α+q

)
(log n)

(
4α+2
4α+2q

)
if h0 ∈ Cα[0, 1]q,

n−
1
2 (log n)(q+1+q/(2r)) if h0 ∈ Aγ,r(Rq) and r < 2,

n−
1
2 (log n)(q+1) if h0 ∈ Aγ,r(Rd) and r ≥ 2.

THEOREM 4 (THEOREM 7 IN (MINSKER ET AL., 2017)). Let Z1, . . . ,Znk ∼ P0 be an
i.i.d sample, and assume that εk > 0 Θk ⊂ Θ are such that for some constant C̃1 > 0

logM(εk,Θk, ρ) ≤ nkε2k,
Π(Θ\Θk) ≤ exp{−nkε2k(C̃1 + 4)},

Π

(
θ : −P0

(
log

pθ
p0

)
≤ ε2k, P0

(
log

pθ
p0

)2

≤ ε2k

)
≥ exp{−C̃1nkε

2
k}.

(11)

Then there exists constants R(C̃1) and C̃2 such that460

P
(
dW1,ρ (δ0,Πk(· | Z1, . . . ,ZK)) ≥ Rεk + e−C̃2nkε

2
k

)
≤ 1

nkε
2
k

+ 4e−C̃2nkε
2
k .

COROLLARY 1 (COROLLARY 8 IN (MINSKER ET AL., 2017)). Let Z1, . . . ,Zn ∼ P0 be an
i.i.d. sample, and let Π̂n,g be defined as in xxx. Under conditions 11, if εk satisfies 1/(nkε

2
k) +

4e−(1+C̃2/2)nkε
2
k/2 < 1

7 , then

P
(∥∥∥δ0 − Π̂n,g

∥∥∥
F
≥ 1.52

(
Rεk + e−C̃2nkε

2
k

))
< 1.27−K

Proof of Theorem 1. If A has a Gamma distribution, then Assumption 1 is satisfied with q =
0. Additionally, as H is squared exponential Gaussian process, it is a density relative to the465

Lebesgue measure given by

λ 7→ 1

2qπq/2
exp{−‖λ‖2/4}

which has sub-exponential tails (see (van der Vaart & van Zanten, 2009)). Therefore, by The-
orem 2 conditions (10) are satisfied for HA with εk = n

−α/(2α+q)
k (log nk)

(4α+q)/(4α+2q) if
h0 ∈ C[0, 1]q and if h0 ∈ Aγ,r(Rq), then

εk =

n
− 1

2
k (log nk)

(q+1+q/(2r)) if r < 2,

n
− 1

2
k (log nk)

(q+1) if r ≥ 2.

Note that (10) map one-to-one to Conditions in (11) (see (Vaart & Zanten, 2008)), thus by The-470

orem 4 with εk > 0 defined as above we have

P
(
dW1,ρ (δ0,Πk(· | Z1, . . . ,ZK)) ≥ Rεk + e−C̃2kε2k

)
≤ 1

nkε
2
k

+ 4e−C̃2nkε
2
k . (12)
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note that whether h0 ∈ Cα[0, 1]q or h0 ∈ Aγ,r(Rq) we can choose k(n) such that 1/(nkε
2
k) +

4e−(1+C̃2/2)nkε
2
k/2 < 1

7 . For example any k ≤ n1/2 log n would work well. Therefore, for any
δ > 0, and fixed k(n) using Corollary 1 there is an εk(δ) with a large enough n such that 475

P
(∥∥∥δ0 − Π̂n,g

∥∥∥
F
≥ 1.52

(
Rεk + e−C̃2nkε

2
k

))
< δ.

B. DETAILS ON APPLICATION TO BOSTON BIRTH WEIGHT DATA

Each record consists of the outcome of interest which is the birth-weight of the newborn,
confounders such as maternal age (years), maternal race (white, black, Asian, American Indian,
other), maternal marital status (married, not married), maternal smoking during or before preg-
nancy (yes, no), maternal education (highest level of education attained: less than high school, 480

high school, some college, college, advanced degree beyond college), parity (first-born, not first-
born), maternal diabetes (yes, no), gestational diabetes (yes, no), maternal chronic high blood
pressure (yes, no), maternal high blood pressure during pregnancy (yes, no), Kessner index of
adequacy of prenatal care (adequate, intermediate, inadequate, no prenatal care), mode of deliv-
ery (vaginal, forceps, vacuum, first cesarean birth, repeat cesarean birth, vaginal birth after ce- 485

sarean birth), clinical gestational age (weeks), year of birth (one of 2001–2012), season of birth
(spring, summer, autumn, winter), date of birth, newborn sex (male, female), Ozone concentra-
tion, Normalized Difference Vegetation Index (NDVI), Medicaid-supported prenatal care (yes,
no). Finally pollution exposure measures are concentration of PM2.5 and four major chemical
constituents of it: elemental carbon (EC), organic carbon (OC), nitrate, and sulfate. After exclud- 490

ing the observation records with missing data, the final sample with size equal to n = 685, 857
is used for our model illustration. We treated normalized Ozone , NDVI, PM2.5, EC, OC, nitrate,
and sulfate as mixture components for non-parametric parts, and other variables as covariates.
For the date of birth within one year, in order to control the temporal effect on birth weight, we
implement a cosine transformation on it, with birth date on January 1st has highest positive effect 495

on birth weight, and June 15th has lowest negative effect on the birth weight. The model used is
(1). In our main analysis, we scaled the estimated effects per a standard deviation increase per
each pollutant, which is more representative of a real world scenario than mass scaling.


