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Abstract

We consider the sparse principal component analysis of high dimensional time se-
ries and propose a dynamic component analysis to compress the time series to lower
dimension subseries based on the spectral density matrix. The number of sample cross-
covariance matrices we need for our spectral density matrix estimator is only logarith-
mic to the sample size, which reveals a novel phenomenon in comparison to the classical
methods. A new chained sparse orthogonal pursuit algorithm combined with a cosine
interpolation method is proposed to efficiently estimate the eigenvectors of the spectral
density matrices. We also provide theoretical results on the error of low-dimension ap-
proximation and compare the results with the optimal compression. Our method and
theoretical results are model-free and only rely on the dependency of the time series.
The numerical results on both synthetic data and neural imaging dataset are provided
to support the theoretical results.

1 Introduction

The exploration of the intrinsic dimension of high dimensional time series is vital in the study of
econometrics, financial analysis, signal processing and neuroscience. Given a d-dimensional sta-
tionary time series {Xt}t∈Z, we aim to find a sequence of low dimensional time series whose linear
combination approximates {Xt}t∈Z. If the observed time series is a sequence of independent data
points, this problem becomes the high dimensional sparse principal component analysis (PCA)
(Johnstone and Lu, 2009). It aims at estimating the sparse principal subspaces of the marginal co-
variance matrix of Xt. Various sparse eigenvector estimators have been proposed in the literature.
Witten et al. (2009); Zou et al. (2006) and Shen and Huang (2008) consider the penalized low rank
approximation. Yuan and Zhang (2013); Ma et al. (2013) and Wang et al. (2014) propose trun-
cated power method and thresholding QR iterative algorithm to compute the sparse eigenspaces.
d’Aspremont et al. (2008); Vu et al. (2013) and Lei and Vu (2015) consider a convex relaxation and
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apply Fantope projected algorithm to get the eigenvectors. However, these works are restricted to
the dataset with independent data points and leave the time series models untouched.

For the dependent time series dataset, there are two major tracks on the dimension reduction.
One is reducing the parameter space in the time domain and the other in the frequency domain.
The family of methods in the time domain mostly relies on specific multivariate time series models
or structural assumptions. Stock and Watson (2002) study the dynamic factor model and estimate
the factors by principal component analysis and similar ideas are also discussed in Stock and Watson
(2005); Forni et al. (2005); Pan and Yao (2008) and Lam and Yao (2012) . Fan et al. (2013) consider
the structural assumption that the covariance matrix of the factor model can be decomposed into a
low rank and a sparse matrix and suggest a thresholding principal orthogonal complements method
to estimate the factor structure. There are also many other dimension reduction methods for the
factor model including the canonical component analysis (Box and Tiao, 1977), the independent
component analysis (Back and Weigend, 1997), the scalar component model (Tiao and Tsay, 1989)
and the dynamic orthogonal components analysis (Matteson and Tsay, 2011). Chang et al. (2014)
seek for a generalized PCA to segment the time series into a contemporaneous linear combination
of lower dimensional subseries. Besides the factor model, the vector autoregressive (VAR) model
is considered by imposing sparsity assumptions on the parameters to reduce the dimension (Qiu
et al., 2015; Guo et al., 2015).

Another track of the time series principal component analysis is in the frequency domain. The
advantage of the PCA in the frequency domain over the time domain is that it can handle larger
family of models. Brillinger (1969) shows that the spectral density matrix obtained from the
Fourier transform of the cross-covariance matrices is crucial to the principal component analysis.
Stoffer (1999) utilizes the spectral density matrix to detect the series with common spectral power at
similar frequency. Jung et al. (2014) study the conditional independence graphical model of discrete
Gaussian processes and propose regularized estimator based on the spectral density estimator.

We consider the dimension reduction for time series whose dimensions are much larger than the
sample size. We estimate the sparse principal eigenvectors for the high dimensional spectral density
matrices and build a time series compression procedure based on these eigenvectors. Our paper
contributes into the area of time series PCA in three aspects. First, we propose a computationally
efficient spectral density matrix estimator. The spectral density matrix has many applications in
time series analysis (Martin, 2001; Manolakis et al., 2005). It plays a vital role in revealing the
dependency properties of time series (Xiao and Wu, 2012; Basu and Michailidis, 2015). However,
existing spectral density matrix estimators are computationally intractable when both the sample
size and variable dimension are large. For example, the Blackman-Tukey estimator (Stoica and
Moses, 1997) requires the number of cross-covariance matrix estimators involved in the calculation
of Fourier transform to be of the same order of the sample size T . The same sample complexity
is needed for the high dimensional scenario considered in Jung et al. (2014). This leads to the
computation bottleneck of the implementation of dimension reduction for high dimensional time
series. However, we show that only O(log T ) cross-covariance matrices are enough to achieve
the optimal rate for the spectral density matrix estimator and its eigenspace estimator. This
result significantly improves the computation complexity of our algorithm. To obtain this result,
we develop the theory for the concentration inequality for the sample cross-covariance matrix of
dependent random variables. Second, we provide efficient procedures to obtain estimators with
uniform statistical rates on the full spectrum of both time and frequency domain. To uniformly
estimate the eigenvectors of the spectral density matrix on different frequencies, we consider a
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discretization and interpolation strategy. The discretization step separates the frequency domain
into grids and estimates the sparse eigenvectors on these frequencies. The estimation is based on a
new multitask sparse PCA algorithm for complex valued Hermitian matrices, which is generalized
from the work of Wang et al. (2014) for a single real matrix. The interpolation step considers a
novel cosine interpolation procedure interlacing the eigenvectors of frequencies among the grids. Our
theoretical results show that eigenvectors on O(

√
T ) grids is enough to achieve a valid compressed

time series. Third, our theoretical analysis is model-free and do not impose any specific time
series model. The theoretical analysis of this paper only requires the α-mixing condition on the
dependency of the time series, which makes our method applicable to a wide range of models.
We provide a general theoretical result that the compression error of our method converges to the
optimal one and characterize the convergence rate by the level of dependency.

1.1 Notation System

Without further notice, all the vectors and matrices will be assumed to take values in C. In this
paper, the notation i =

√
−1 is the imaginary unit. For a complex number z = x + iy, z̄ is the

complex conjugate of z and |z| =
√
x2 + y2 is the absolute value of z. The `p-norm of a complex

value vector v = (v1, . . . ,vd)
T ∈ Cd is ‖v‖p = (

∑d
j=1 |vj |p)1/p. We define the unit ball in Cd

as Sd−1(C) = {v ∈ Cd|‖v‖2 = 1}. For a complex matrix A, A† = ĀT denotes the Hermitian
conjugate of A. A is called Hermitian if A = A†. For a matrix A of size p × q, the (a, b)-norm
for a, b ∈ [1,∞], denoted by ‖A‖a,b, is defined as the `b norm of the vector consisting of all the `a
norms of the rows of A. Hence ‖A‖2,0 is the number of nonzero rows of A. The spectral norm of
A is denoted by ‖A‖2 = max{|v†Av|

∣∣ ‖v‖2 = 1}. For two square complex matrices of the same
dimensions A and B, the matrix inner product 〈A,B〉 is defined as tr(A†B). The induced norm is
called Frobenius norm and and is given by ‖A‖F =

√
tr(A†A). We use λj(A) to denote the j-th

largest eigenvalue of a Hermitian matrix A, and use σj(A) to denote the j-th largest singular value
of A.

1.2 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we provide the preliminary results
on the time series and spectral density matrix. In Section 3, we propose a computationally efficient
estimator for spectral density matrix. In Section 4, we develop the Dynamic Component Analysis
(DCA) algorithm to compress the high dimension time series based on the estimators in Section 3.
Its statistical and computational performance is analyzed in Section 4.2. Section 5 is devoted to
numerical studies. The technical proofs are listed in the Appendix.

2 Background

This section provides necessary background for the dimension reduction of time series. Before
presenting the main part of this section, we first define several notations. For a d-dimensional, mean-
zero and stationary time series {Xt}t∈Z, define the cross-covariance matrices {Ru}u∈Z as Ru =

E[XuX
†
0], which captures the second-moment characteristics of the interdependencies between two

random variables in the time series with lag u. In this paper, we assume that
∑∞

t=−∞ |(Rt)jk| <∞
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for each 1 ≤ j, k ≤ d. The spectral density matrices are defined as

S(ω) =
∞∑

t=−∞
Rt exp(−i2πωt), ω ∈ [0, 1). (2.1)

2.1 Optimality Characterization of PCA

We first quickly review the optimal compression characterization of PCA, and generalize it for time
series. We assume that we know the population covariance matrix in this section.

Assume that we have a d-dimensional random variable X such that E[‖X‖22] <∞, our objective
is to linearly transform it into a q-dimensional random variable where q < d by multiplying X by a
q× d matrix B, and then transform it back into dimension d by multiplying a d× q matrix C. The
expected error or information loss, due to this compression-recovery procedure, can be quantified
as E

[
(X−CBX)†(X−CBX)

]
. The matrices B and C minimizing E

[
(X−CBX)†(X−CBX)

]
are given by

B = (v1, . . . ,vq)
T , C = BT ,

where v1, · · · ,vq are the leading q eigenvectors of population covariance matrix Σ = E[XX†]. Note
that the q principal components {vTi X}1≤i≤q are uncorrelated. This characterization is well-known
in the literature and its proof can be found in, e.g., Jolliffe (2002).

A similar optimal compression problem can also be considered in the time series context, and
accordingly, the linear transformations of data should be replaced by two linear filters. More
precisely, assume that we have a stationary d-dimensional time series {Xt}t∈Z taking values in C.
Let

b(t) : Z→Mq×d(C), c(t) : Z→Md×q(C),

be two linear filters, where q is an integer smaller than d. Define the q-dimensional time series ζt
via the filter b(·) as ζt =

∑
u∈Z b(t− u)Xu, and we back out an approximate of X via c(·) as

X∗t =
∑
u∈Z

c(t− u)ζu. (2.2)

Because of the stationarity assumption, the quality of this approximation can be measured via
the expected squared recover error between Xt and X∗t at a single time E[‖Xt −X∗t ‖22]. We have
the following theorem characterizing optimal filters b(·) and c(·) in the sense of minimizing the
expected squared recover error.

Theorem 2.1 (Theorem 3.1, Brillinger (1969)). Let X∗t be the compressed time series defined in
(2.2). The b(·) and c(·) minimizing the expected squared recover error E[‖Xt −X∗t ‖22] is given by

b(t) =

∫ 1

0
B(ω) exp(i2πωt)dω, c(t) =

∫ 1

0
C(ω) exp(i2πωt)dω,

where B(ω) = (v1(ω), . . . ,vq(ω))†,C(ω) = B†(ω), and {vi(ω)}1≤i≤q are the q leading eigenvectors
of S(ω).

It can be readily checked that when Xt is a white noise, the spectral density matrices are all
the same and equal to R0, so the result in Theorem 2.1 coincides with the usual PCA. Therefore,
the variational interpretation of PCA is a special case of Theorem 2.1. The statistical counterpart
of the above time series PCA has already been investigated in Brillinger (1969) in low dimensional
regime, and we will explore the high dimensional regime in the following discussion.
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3 Spectral Density Matrix Estimation

In this section, we propose a computationally efficient method to spectral density estimation.
Let {Xt}0≤t≤T be the observations of the time series. Define the sample cross-covariance ma-

trices {R̂t}t∈Z as

R̂t =
1

N(t, T ) + 1

N(t,T )∑
k=0

X(k+1)t+kX
†
kt+k, 0 ≤ t < T, (3.1)

where N(t, T ) = b(T − t)/(t+ 1)c. When t < 0 we set R̂t = R̂†−t. Now that R̂t is defined for all

t ∈ Z, the estimator for Ŝ(ω) will be given by

Ŝ(ω) =

Cblog T c∑
t=−Cblog T c

R̂t exp(−i2πωt). (3.2)

where C is a constant which will be specified in Theorem 3.3. The cutoff at Cblog T c is intimately
related to the α-mixing condition where we will explain in details in Assumption 2, and will be
later justified in the theoretical analysis in Theorem 3.3. This completes our estimator for spectral
density estimators.

We now give the theoretical justification of our estimator and explain why O(log T ) cross-
covariance matrices are enough. The following two definitions are instrumental in measuring quan-
titatively how dependent the time series is across time.

Definition 3.1. Given two σ-algebras A and B, the α-mixing coefficient between A and B, denoted
by α(A,B), is defined as

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|.

The α-mixing coefficient between two σ-algebras in some sense measures the dependency be-
tween the two; when the two σ-algebras are independent their α-mixing coefficient is 0. We then
proceed to define the α-mixing notion for a stationary time series.

Definition 3.2. Given a stationary time series Xt, the α-mixing function at lag u ≥ 0 is defined
as

α(u) = α (σ(Xt, t ≤ 0), σ(Xt, t ≥ u)) .

Note that α(u) can be equivalently defined as α (σ(Xt, t ≤ s), σ(Xt, t ≥ s+ u)) for an arbitrary
s ∈ Z, because the time series is assumed to be stationary.

With the help of the above definitions we introduce four assumptions. We first introduce
the sparisty assumption which is important in the approximation of the time series. Given a q-
dimensional subspace U , we suppose u1, . . . ,uq is a set of the orthonormal basis of U . We say
that the space U is s∗-sparse if the matrix U = (u1, . . . ,uq) has at most s∗ nonzero rows, i.e.,
‖U‖2,0 ≤ s∗. Elementary algebra shows that this definition is well-defined because the number
of non-zero rows doesn’t change if we switch to another orthonormal basis of U . The sparsity
assumption is defined as follows.
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Assumption 1. For all ω ∈ [0, 1), the q-dimensional principal subspace of S(ω) is s∗-sparse and
these principal subspaces share the same support. Here, the principal subspace is the projection
matrix spanned by the leading q eigenvectors. Moreover, the eigengaps of S(ω)’s satisfy that
infω∈[0,1) λq(S(ω))− λq+1(S(ω)) > δq > 0 for some universal constant δq.

Remark 3.1. This sparsity imposed on spectral density matrices is at first glance less straightfor-
ward compared to other sparsity assumptions in literature, and we would like to give some examples
in order to shed more light on this assumption. For example, consider the factor model (Fan et al.,
2013)

Xt = AFt + εt, (3.3)

where Xt is d-dimensional and Ft is q-dimensional, and q is much smaller than d. εt is a white
noise with distribution N (0, Id). For the sake of identifiability, we assume that A has orthonormal
column vectors, i.e. ATA = Iq. We also assume that the noise is independent of the factor process,
and the factor process is uncorrelated with lags larger than h. A simple calculation reveals that,
for all ω ∈ [0, 1),

S(ω) = A

(
h∑

u=−h
E[FuF

†
0 ]ei2πωu

)
AT + Id = AΓ(ω)Λ(ω)Γ(ω)†AT + Id, (3.4)

and obviously a q-dimensional leading eigenspace of S(ω) is generated by the column vectors of
AΓ(ω). We hence see that if A is s∗-sparse in the sense that ‖A‖2,0 ≤ s∗, then for all ω ∈ [0, 1)
the leading q eigenvectors are jointly s∗-sparse. Moreover, the sparsity pattern is the same across
all ω in [0, 1) for S(ω).

Assumption 2. There exists positive constants c1 and γ1 ≥ 1 such that for all lag u ≥ 1, the
α-mixing coefficient satisfies

αX(u) ≤ e−c1uγ1 .

Assumption 3. There exist positive constants c2 and γ2 such that for all v ∈ Sd−1(C) and all
λ ≥ 0, we have

P(|vTX0| ≥ λ) ≤ 2e−c2λ
γ2
.

Note that Sd−1(C) is the unit ball of dimension d and by strong stationarity of X, the above
inequality holds if we replace X0 by Xt, t ∈ Z.

Assumption 4. Define γ via 1/γ = 1/γ1 + 2/γ2, where γ1 and γ2 are given in Assumption 2 and
3. We assume that γ < 1.

Remark 3.2. We would like to give some immediate comments on these assumptions. Assumption
2 means that the α-mixing function of the time series possesses an exponential decay, which gives
the time series a “short memory” flavor. Assumption 2 is also assumed in Fan et al. (2013) for
the factor model in (3.3). Assumption 3 is a bound on the marginal distribution, and apparently
it is more general than the sub-Gaussian or sub-exponential model, with γ2 = 2 corresponding
to the sub-Gaussian case and γ2 = 1 corresponding to the sub-exponential case. Assumption 4
is a technical assumption allowing us to apply Bernstein inequality presented in Merlevède et al.
(2011). We would like to point out that Assumption 4 is not a stringent assumption, for example
when marginal distribution is sub-Gaussian, this assumption yields no restriction on γ1. The set of
stationary time series distributions satisfying Assumptions 2 - 4 will be denoted byM(c1, c2, γ1, γ2).
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We will work on the model M(c1, c2, γ1, γ2) exclusively in the remainder of the section. We
first present the convergence rate of Ŝ(ω) towards S(ω), which is an interesting result by its own.
Define the sparse operator norm of any matrix Σ as

‖Σ‖op,s∗ = sup
{

v†Σv|‖v‖2 ≤ 1, ‖v‖0 ≤ s∗
}
.

Actually, besides the estimator Ŝ(ω) in (3.2), we consider the following general estimator

ŜM (ω) =

M(T )∑
t=−M(T )

R̂t exp(−i2πωt).

So Ŝ(ω) is a special case of ŜM (ω) by choosing the cutoff value M(T ) = Cblog T c. We can show
in the following theorem the advantage of choosing such M(T ).

Theorem 3.3. Suppose Assumptions 1 – 4 are satisfied. If M(T ) → ∞, M(T )/T 1/3 → 0 and
(s∗ log d)2/γ−1M(T ) ≤ T ≤ d, ŜM (ω) is consistent in the following norms

sup
ω∈[0,1)

‖ŜM (ω)− S(ω)‖op,s∗ = OP

(
exp(−c0M(T ))

∨
M(T )3/2

√
s∗ log d

T

)
,

sup
ω∈[0,1)

‖ŜM (ω)− S(ω)‖∞,∞ = OP

(
exp(−c0M(T ))

∨
M(T )3/2

√
log d

T

)
.

(3.5)

where c0 is some constant only depending on c1, c2, γ1, γ2.

Remark 3.3. A straightforward conclusion from this theorem is that

sup
ω∈[0,1)

‖Ŝ(ω)− S(ω)‖op,s∗ = OP
(
(log T )3/2

√
s∗ log d/T

)
sup

ω∈[0,1)
‖Ŝ(ω)− S(ω)‖∞,∞ = OP

(
(log T )3/2

√
log d/T

)
by setting M(T ) = b(2/c0) log T c in the theorem. Moreover, our estimator is computationally more
efficient than the Blackman-Tukey estimator

S̃(ω) =
T∑

t=−T
wt · R̂t exp(−i2πωt),

in the sense that Blackman-Tukey estimator demands O(T ) cross-covariance matrices while our
estimator only requires O(log T ) cross-covariance matrices.

We shed more lights on the intuition of the statistical rate in (3.5). The statistical error of
Ŝ(ω) can be divided into two parts: the resolution error and the estimation error. The resolution
error is caused by not using the whole spectrum in Fourier transform, and the estimation error is
from cross-covariance matrix estimators. We can also interpret the resolution error as the bias and
estimation error as the variance. Similar to the bias-variance trade-off, when the cutoff value is
small, the resolution error tends to be large and the estimation error tends to be small. When the
cutoff value is large, the resolution error tends to be small while the estimation error is large. Our
theorem provides the scaling condition on the cutoff value when the estimator is consistent.
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4 Dynamic Component Analysis

After estimating the spectral density matrix derived in the previous section, we conduct the Dy-
namic Component Analysis for subspace estimation. The algorithm we propose for DCA is a
combination of CSOAP(Chained Sparse Orthogonal Pursuit) and cosine interpolation. In this sec-
tion, we first describe our Dynamic Component Analysis (DCA) algorithm and then we show the
theoretical results.

4.1 CSOAP Algorithm and Cosine Interpolation

For all frequencies ω, an estimator Ŝ(ω) has been derived in the previous subsection. We then
discretized the frequency space [0, 1) into N equally-spaced points {0, 1/N, · · · , (N − 1)/N}, and we
aim at calculating the principal subspaces for these N Hermitian matrices. As noted in Wang et al.
(2014), an initialization with Alternate Direction Method of Multipliers (ADMM) and followed by a
Sparse Orthogonal Pursuit (SOAP) can achieve an optimal statistical convergence rate to compute
the principal subspace. This algorithm combined with the intuition that when N is large, adjacent
Ŝ(k/N) are close to each other leads to the following CSOAP (Chained Sparse Orthogonal Pursuit)
algorithm: An ADMM initialization is used for Ŝ(0), followed by a SOAP. The resulting principal
subspace can then be plugged in as initialization for the SOAP for Ŝ(1/N), and this procedure
propagates through 2/N, · · · , (N − 1)/N .

We begin with the ADMM initialization step. This algorithm has been presented in detail
in Wang et al. (2014). The central idea lies in the convex relaxation technique: if we define the
complex q-dimensional fantope Fq ⊂ Cd×d as

Fq = {A Hermitian| tr(A) = q, 0 � A � I} ,

then it can be proved that it is actually the convex hull of the set
{
VV†|V†V = I

}
where V ∈ Cd×q.

With this convex relaxation, the penalized optimization problem associated with the q-dimensional
principal subspace of a Hermitian matrix S can be formulated as (see Vu et al. (2013))

Minimize − 〈S,Π〉+ ρ‖Π‖1,1
Subject to Π ∈ Fq.

(4.1)

We want to numerically solve this optimization problem for S = Ŝ(0). As is discovered and
analyzed in Vu et al. (2013) and Wang et al. (2014), the ADMM is especially suited for this kind
of optimization problem, and it proceeds as follows. We first define the augmented Lagrangian
associated to the problem as

Lρ,β(Π,Φ,Θ) = −〈S,Π〉+ ρ‖Φ‖1,1 − 〈Θ,Π−Φ〉+
β

2
‖Π−Φ‖2F ,

where S, Π, Φ and Θ are all Hermitian matrices, so the augmented Lagrangian always takes
real values. The ADMM algorithm iteratively optimizes L with respect to Π, then with respect
to Φ, and updates the Lagrange multiplier Θ. As we can readily observe, the element-wise soft-
thresholding algorithm is subtly different compared to its counterpart when we are dealing with real
matrices. This is due to the definition of the complex ‖ · ‖1,1-norm, which creates a coupling term
between the matrix’s real and imaginary parts. A detailed description for the ADMM algorithm
can be found in Appendix A.

8



After the ADMM algorithm outputs Π
(R)

, we compute its top q leading eigenvectors and
denote it by Uinit ∈ Cq×d. It will be used later for the initialization to compute Ŝ(0). In order to
do that, we first give the SOAP algorithm, which is the building block for computing the principal
subspaces. The value of iteration number R̃ and the truncation parameter ŝ is specified in Section

Algorithm 1 SOAP Algorithm

Function: Û← SOAP(S, Û(0))
Input: d× d Hermitian matrix S, d× q orthonormal columns Û(0), truncation parameter ŝ

1: For t = 0 to R̃− 1 do
2: V(t+1) ← S · Û(t)

3: Ṽ(t+1),R
(t+1)
1 ← Thin QR(V(t+1))

4: Ũ(t+1) ← Truncate(Ṽ(t+1), ŝ)

5: Û(t+1),R
(t+1)
2 ← Thin QR(Ũ(t+1))

6: End For

Output: Û← Û(R̃)

4.2. Truncate(Σ, s) is defined as follows. We sort the `2 norm of each row of Σ in the descending
order. The corresponding first s rows are left unchanged and all the other rows are truncated to 0.
The result is defined to be Truncate(Σ, s). The definition of Thin QR in line 3 and 5 can be found
in Golub and Van Loan (2012).

After giving the SOAP algorithm, we are ready to give the whole algorithm. First, the interval
[0, 1) will be discretized into grids {0, 1/N, · · · , (N − 1)/N}, and the SOAP algorithm will be
run on Ŝ(0), Ŝ(1/N), · · · , Ŝ((N − 1)/N). For the spectral density matrix on each frequency, it is
unnecessary to start from the ADMM algorithm. According to the smoothness of S(ω) with respect
to ω, the eigenvectors of Ŝ(k/N) is a good initialization of the SOAP algorithm for Ŝ((k + 1)/N).
Therefore, we can chain up the computation from Ŝ(0) to Ŝ((N − 1)/N). A detailed description
can be found in Algorithm 2.

Algorithm 2 CSOAP Algorithm

Function: Û← CSOAP({Ŝ(k/N)}N−1k=0 )

1: Π← ADMM(Ŝ(0))
2: Set the columns of Uinit to be the top q leading eigenvectors of Π
3: Ũ(0) ← Truncate(Uinit, ŝ),Uinit ← Thin QR(Ũ(0))
4: Û(0) = SOAP(Ŝ(0),Uinit)
5: For k = 1 to N − 1 do
6: Û(k/N) = SOAP(Ŝ(k/N), Û((k − 1)/N))
7: End For

Output: {Û(k/N)}N−1k=0

The CSOAP algorithm yields {Û(k/N)}N−1k=0 . In order to get the eigenvectors on the full spec-
trum of ω ∈ [0, 1), one possible solution is to add to the resolution by increasing N . However, this
requires to run Algorithm 2 for more times and the computation cost is increased. There is also a
theoretical reason why we cannot apply this näıve method. This is because the output eigenvectors
Û(ω) from Algorithm 2 cannot be guaranteed to be smooth with respect to ω, which will affect
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the accuracy of inverse Fourier transform and the convolution when we apply the filtering step in
(2.2). To overcome this challenge, we apply the interpolation between Û(k/N) and Û((k+ 1)/N).
We interpolate Û(ω) for ω ∈ [k/N, (k + 1)/N) by using cosine function,

Û(ω) = (Û(k/N)/2− Û(k + 1/N)/2) cos(πNω − k/N) + Û(k/N)/2 + Û(k + 1/N)/2. (4.2)

Here we do not use the spline interpolation or other widely used methods because they violate
the convergence conditions for the Fourier transform on Û(ω). To apply the Fourier transform,
Û(ω) cannot fluctuate too much inside each interval [k/N, (k + 1)/N). By applying the cosine
transform, for each ω ∈ [k/N, (k + 1)/N), Ûst(ω) is bounded between the values of Ûst(k/N) and
Ûst((k + 1)/N) which guarantees that Û(ω) has nice smooth property.

The estimators of filters b and c used in the compression step in (2.2) are given by

b̂(t) =

∫ 1

0
Û†(ω) exp(i2πωt)dω, ĉ(t) =

∫ 1

0
Û(ω) exp(i2πωt)dω.

In practice, we cannot add infinite terms for the convolution step in (2.2). Therefore, the final
estimator b̃ and c̃ is defined as

b̃(t) =

{
b̂(t) |t| ≤ N

0 |t| > N
and c̃(t) =

{
ĉ(t) |t| ≤ N

0 |t| > N.
(4.3)

Here the truncation parameter N is the same as the number of frequency grids used in Algorithm 2.
This is due to the duality between the Fourier transform and inverse Fourier transform. Therefore,
the final compressed time series becomes

X b̃
t =

∑
u∈Z

c̃(t− u)
∑
s∈Z

b̃(u− s)Xs. (4.4)

Notice that the summation above is essentially a finite summation and we will show how to choose
the truncation parameter N in the next section.

4.2 Theoretical Results

We proceed to present the main convergence rate result for the whole DCA algorithm. First of all,
we list the following parameters required in order to implement the algorithm.

• ρ, the regularization parameter in ADMM algorithm.

• β, the penalization parameter in ADMM algorithm.

• ŝ, the truncation parameter in SOAP algorithm.

• R, the number of steps taken in ADMM algorithm.

• R̃, the number of steps taken in SOAP algorithm.

• N , the number of discretization points on frequency interval [0, 1).

Our theoretical analysis gives a concrete guidance on how to choose the parameters above. We
list the requirements in the following assumption. The constant C in the assumption is generic and
independent to d, T and s.

10



Assumption 5 (Tuning parameters). The parameters listed above need to follow the following
scaling conditions.

• (ADMM parameters) The two parameters in ADMM algorithm satisfies

ρ = C(log T )3/2
√

log d

T
and β = ρd/

√
q.

• (Truncation parameter in SOAP) Define the parameter

η = max
ω∈[0,1)

3λq+1(S(ω)) + λq(S(ω))

λq+1(S(ω)) + 3λq(S(ω))
< 1,

The truncation parameter in SOAP algorithm satisfies ŝ = C max
{

4q/(η−1/2 − 1)−2, 1
}
s∗.

• (Numbers of iterations) Define A = min{
√

2η/4,
√
qη(1− η1/2)/2}. The number of steps

taken in ADMM algorithm and each of the SOAP algorithm satisfy

R ≥
(
qd2(log T )3 log d

T

)1/2

·

(
A− C(log T )3/2

√
log d

T

)−1
and

R̃ ≥ 4(log(1/η))−1 log

(
C(η/8)1/2(log T )3/2

√
s∗ log d

T

)
.

• (Number of discretization) The number of discretization points on [0, 1) satisfies

N ≥ C(log T )−3/2
(
s∗ log d

T

)−1/2
.

As described in the previous section, the CSOAP algorithm consists of one single ADMM in
order to initiate the whole process and a sequence of SOAP steps. Denote U∗(ω) as the matrix
assembling the q-leading eigenvectors of S(ω) and U∗(ω) as the eigenspace spanned by U∗(ω). Let

Π∗0(ω) = U∗(ω)(U∗(ω))† and recall that Π
(R)

(ω) is the output of ADMM algorithm after R steps.
The following theorem analyze the convergence property of ADMM algorithm under the present
setting.

Theorem 4.1. Assume that the time series are generated from M(c1, c2, γ1, γ2) and satisfy As-
sumption 1. Denote δq0 = λq(S(0)) − λq+1(S(0)) > 0. Under Assumption 5 and the scaling in
Theorem 3.3, we have

sup
0≤k≤N−1

‖Π∗0(k/N)−Π
(R)

(k/N)‖F = OP

(
1

δq0
(log T )3/2

√
log d

T

)
. (4.5)

We then proceed to the convergence analysis of SOAP algorithm. The space spanned by
the eigenvectors Û(ω) in (4.2) is denoted as Û(ω). The projection matrix for Û(ω) is Π̂(ω) =
Û(ω)Û(ω)†. We define the distance between Û(ω) and U∗(ω) as

D(Û(ω),U∗(ω)) = ‖Π̂(ω)−Π∗0(ω)‖F

11



Theorem 4.2. Let {Xt}0≤t≤T be a time series generated from the modelM(c1, c2, γ1, γ2). Under
the same conditions as Theorem 4.1, we have

sup
ω∈[0,1)

D(Û(ω),U∗(ω)) = OP

(
(log T )3/2

√
qs∗(q ∨ log d)

T

)
. (4.6)

We then present the convergence property of the whole CSOAP algorithm. Compared with
the usual rates derived in the literature for usual sparse PCA (Vu et al., 2013; Wang et al., 2014),
an extra term of the order (log T )3/2 appears due to the fact that in order to estimate spectral
density matrices, we have to sum up a certain number of error terms corresponding to estimated
cross-covariance matrices.

Theorem 4.3. Let {Xt}0≤t≤T be a time series generated from the modelM(c1, c2, γ1, γ2) satisfying
Assumption 1. Assume the eigengaps of S(ω) satisfies infω∈[0,1) λi(S(ω))− λi+1(S(ω)) > δ > 0 for

all i = 1, ..., q. Let {b̂(t)}t∈Z be the estimators we obtain using the DCA algorithm that satisfying
Assumption 5. If c(s∗ log d)2/γ−1 log T ≤ T ≤ c′d where c and c′ are two constants, then we have∣∣∣E [‖Xt −Xb

t ‖2
]
− E

[
‖Xt −X b̃

t ‖2
] ∣∣∣ = OP

(
(log T )3/2q3/2s∗

√
log d

T

)
. (4.7)

This theorem guarantees that with high probability, by using the estimators we obtain from
the DCA algorithm, the compression performance achieved will be very close to the optimal per-
formance, and an upper bound is provided by the right-hand side of (4.7).

5 Simulation

In this section, we provide numerical results to verify the statistical accuracy of our dynamic com-
ponent analysis (DCA). The whole procedure can be decomposed into three steps. In the first step,
we estimate the spectral density matrices by applying Fourier transform on the cross-covariance
matrices (3.2). In the second step, we apply our CSOAP algorithm on the estimated spectral den-
sity matrices to get their leading eigenvectors. In the last step, we use cosine interpolation and
Fourier transform to transform the eigenvectors of estimated spectral density matrix back to the
estimator b̃ and c̃ in (4.3). In the following, we evaluate the accuracy of these three steps for both
the synthetic data and brain imaging dataset.

5.1 Synthetic Data

The model we consider is the factor model Xt = AFt + εt where Xt is d-dimensional, Ft is q-
dimensional and the white noise εt ∼ N (0, Id). A is a s∗-sparse d× q matrix where only the first s∗

rows are non-zero and every entry in these s∗ rows is independently generated from N (0, 1). In all
of the following synthetic simulations, we set s∗ = 10 and q = 5. We let Ft = DFt−1 + θt−1 where
D is a q × q matrix and θt−1 ∼ N (0, Iq). Note that this is the autoregressive model with order 1
(Johansen, 1995). We set D = 0.8I. Since the time series is stationary, the covariance matrix of Ft
can be evaluated by solving the linear system Cov(Ft) = Cov(DFt + θt) for all t ≥ 0. We generate
T + 1 samples of the factor model X0, . . . ,XT with the initial vector F0 ∼ N (0,Cov(F0)).

Spectral Density Matrices Estimation: In order to estimate the spectral density matri-
ces S(ω) =

∑∞
t=−∞Rt exp(−i2πωt) , we apply Fourier transform on the sample cross-covariance
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Figure 1: Spectral density matrices estimation

matrices R̂t. However, the definition of spectral density matrix requires us to add infinite cross-
covariance matrices terms, which is unrealistic in real applications. We prove in Theorem 3.3 that
cutting off at t = blog T c suffices it to estimate the spectral density matrices assuming that we have
T samples. In the simulation, we set T = 105 and d = 100, 150, 200. To calculate the true spectral
density matrices, we first obtain the cross-covariance matrix Rt = E[FtF

†
0 ] = Dt Cov(F0). Then,

we plug it into (3.4) to get the spectral density matrices. In Figure 1(a), we illustrate how the
estimation error of spectral density matrix estimator varies with the cutoff value. We discretize the
frequency space into 100 equally-spaced points and average the estimation errors d−1‖Ŝ(ω)−S(ω)‖F
on these 100 equally-spaced ω’s. We use this scaled value to represent the estimation error.

As we can see, the estimation error first decreases and starts to increase after some point. The
reason is because getting a more accurate Fourier transform requires us to increase the cutoff value.
However, this involves more sample cross-covariance estimators in (3.2) which brings additional
estimation errors. It means that there is a trade-off between the error incurred by calculating
Fourier transform and the error incurred by the estimation error. We demonstrate how the optimal
cutoff value achieving the minimal estimation error changes with the sample size T in Figure 1(b).
Note that the axis of sample size is logarithmic and the optimal cutoff value almost linearly increase.
From the figure, it is clear that the cutoff value with least error has a logarithmic relationship with
the sample size, showing that our setting of cutoff value is reasonable.

CSOAP Statistical Rate of Convergence: The core of CSOAP is to estimate the leading
eigenvectors of Ŝ(ω). One way to evaluate the accuracy of the leading eigenvectors is to compute
the distance between the subspace spanned by them and the subspace spanned by the true leading
eigenvectors (Wang et al., 2014). The distance here is the Frobenius norm between the projection
matrices of the corresponding subspaces. Note that the leading eigenvectors for different ω’s are
different. Therefore, we discretize the frequency space [0, 1) into 100 equally-spaced points and add
together the distance at these points. We plot the results of three tests to show the relationship
between the convergence rate and the statistical error. All our results are compared to the PCA
algorithm, which simply calculate the eigenvectors of S(ω) instead of using CSOAP algorithm.

We vary the size of the sample size T and use blog T c as the cutoff value. In Figure 2, we
illustrate the relationship between the sample size and the subspace distance. We can see that our
CSOAP algorithm performs better than PCA algorithm consistently. When the number of samples
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Figure 3: Prediction error in different settings

increases, our estimator performs better, which is in accordance with our convergence rate.
Prediction Accuracy: In this section, we show the prediction accuracy of our DCA algorithm.

We conduct the simulation under d = 100, 150, 200 respectively. In each setting, we vary the
number of samples from 500 to 5000. The samples are generated from the factor model illustrated
before. We use the expectation of the information loss in (B.1) between the original sample and
the compressed sample to evaluate the accuracy of the prediction. We compare our algorithm with
the PCA algorithm and the optimal compression. To get the optimal compression, observe that we
can compute the true spectral density matrices and get the compression by Theorem 2.1.

The results are shown in Figure 3. We can see from the figure that our algorithm works better
than PCA algorithm. Also, when the dimension increases, the information loss decreases, which is
in accordance with our convergence rate. Our results also show that the estimation error is close
to the optimal value even if the sample size is relatively small.

5.2 Real Data

We consider the ADHD-200 Data (Biswal et al., 2010) as the real application of the time series
PCA. The dataset consists of rs-fMRI images of 973 subjects. Some subjects are diagnosed with
ADHD type 1,2 and 3 and some are healthy controls. We use the images of 478 healthy subjects
and their age information. Note that we only use the data on 264 seed regions for analysis (Qiu
et al., 2015). That is to say, every image is a 264×1 vector. Also, we take the median of the images
for each subject to get the single image vector for that subject. Assume the images for healthy
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subjects at the same age are similar, we can think of the images as a time series with regard to the
age. Then, we apply our DCA algorithm to compress the images. We divide randomly the images
into the training set and the testing set. The training set consists of 340 samples while the testing
set consists of 138 samples.

Since the ages ranging from 7.1 years old to 21.82 are continuous, we first need to discretize
the lags. In specific, we consider T = 369 discrete lags by transforming the age interval [7.1, 21.82]
to [1, 369] in the sense that the t-th lag corresponds to the age 7.1 + 0.04(t − 1). We apply the
weighted average of the samples with different ages, where the weights are determined by Gaussian
kernel. Therefore, our discretized time series X ′t for any t = 1, . . . , 369 is

X ′t =

∑
uKσ(7.1 + 0.04(t− 1), u)Xu∑
uKσ(7.1 + 0.04(t− 1), u)

(5.1)

where Xu is the original sample at age u and Kσ is the Gaussian kernel where Kσ(x, y) = exp
(
−

‖x− y‖2/(2σ2)
)
. Here we choose σ = 0.01. By applying DCA algorithm to our new samples

{X ′t}369t=1, we plot the heatmaps of the spectral density matrices S(ω) for ω = 0.2, 0.5 and 0.9 in

Figure 4. As the entries Ŝ(ω) are complex numbers, we illustrate the absolute values of these entries.
We can see from the figure that the values of a small proportion of rows are significantly larger than
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Figure 4: The spectral density matrix when ω = 0.2, 0.5 and 0.9

the values of other rows. It is expected that the corresponding positions of the leading eigenvectors
are also nonzero. We use CSOAP to estimate the leading eigenvectors of spectral density matrices
S(0.2),S(0.5) and S(0.9), which are all nonzero at the 132nd and 161st components.

Then we show that our compression is useful in predicting the image data given the subject’s
age. We use the previous setting to evaluate b̂(t) and ĉ(t). Then we compress the converted samples
using (2.2). Denote the data after compression to be X∗t . As we assume that the samples of the
same age are similar, we apply the weighted average with Gaussian kernel for prediction. Given a
test sample’s age t0, we predict the data Xt0 using two ways. One way is to use the compressed
sample, in which

X̂t0 =

∑369
i=1Kσ(7.1 + 0.04(i− 1), t∗)X∗i∑369
i=1Kσ(7.1 + 0.04(i− 1), t∗)

(5.2)

Another way for prediction is to use the raw data, in which we simply replace the compressed time
series {X∗i }369i=1 in (5.2) by the non-compressed data {X ′i}369i=1 defined in (5.1). We then calculate
the `2-norm of the difference between the value predicted and the true value dividing the dimension
264. The results are shown in Figure 5. Each point at age t represents the median of the error of
the test examples whose age is in the interval [t, t + 0.5). We can see from the figure that using

15



 0

 5

 10

 15

 20

 25

 30

 35

 6  8  10  12  14  16  18  20

E
rr

o
r 

Age

  DCA
  RAW

Figure 5: Prediction using compressed data and the raw data

Algorithm 3 ADMM Algorithm

Function: Π← ADMM(Ŝ(0))
Input: d× d Hermitian matrix Ŝ(0)
Parameters: regularization parameter ρ, penalization parameter β

1: For t = 0 to R do
2: Π(t+1) ← arg min

{
Lρ,β(Π,Φ(t),Θ(t))|Π ∈ Fq

}
3: Φ(t+1) ← arg min

{
Lρ,β(Π(t+1),Φ,Θ(t))|Φ ∈ H

}
4: Θ(t+1) ← Θ(t) − β(Π(t+1) −Φ(t+1))
5: End For

Output: Π
(R)

= 1
R

∑R
t=1 Π(t)

compressed data gives us better results than using the raw data. It shows that our compression
scheme is useful in extracting important information of the data.

A Algorithms for ADMM Initialization Step

In this section, we describe the detailed steps for the initialization steps for SOAP algorithm. The
ADMM algorithm essentially solves the convex relaxation problems in (4.1).

The algorithm for the first step corresponding to the minimization with respect to Π is given in
Algorithm 4. This step projects the matrices to the Fantope cone and it has a closed form solution
through singular value decomposition.

Algorithm 4 Fantope Projection

Function: Π(t+1) ← Projectionβ(Φ(t),Θ(t),S)

Spectral Decomposition: QΛ(t)Q† ← Φ(t) + Θ(t)/β + S/β
Quadratic Programming: v′ ← arg min

{
‖v − diag(Λ(t))‖22|v ∈ Rd,

∑
vj = q, 0 ≤ vj ≤ 1

}
Output: Π(t+1) = Qdiag(v′)Q†

The step corresponding to the minimization with respect to Φ is given by Algorithm 5. This
step is a soft-thresholding for the matrices.
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Algorithm 5 Soft-thresholding

Function: Φ(t+1) ← Soft Thresholdingρ,β(Π(t+1),Θ(t))

Output: Φ
(t+1)
jk = (Π

(t+1)
jk − 1/βΘ

(t)
jk )/|Π(t+1)

jk − 1/βΘ
(t)
jk | ×max

{
|(Π(t+1)

jk − 1/βΘ
(t)
jk )| − ρ/β, 0

}

B Proof for Theorem 2.1

To make this paper self-contained, we provide a brief proof of Theorem 2.1 and the detailed proof
can be found in Brillinger (1969). Define the Fourier transform associated with b(·) and c(·)
respectively as

B(ω) =
∑
t∈Z

e−i2πωtb(t), C(ω) =
∑
t∈Z

e−i2πωtc(t),

then the squared recovery error E[‖Xt −X∗t ‖22] as

E
[
tr((Xt −X∗t )(Xt −X∗t )†)

]
=

∫ 1

0
tr
(

(I−C(ω)B(ω))S(ω)(I−C(ω)B(ω))†
)
dω (B.1)

=

∫ 1

0
‖S1/2(ω)−C(ω)B(ω)S1/2(ω)‖2Fdω, (B.2)

where (B.1) is by the convolution property of the Fourier transform. Since the rank of C(ω)B(ω)is
less or equal to q, when ω is fixed the minimization problem for the integrand is a low-rank
approximation problem for S1/2(ω), and it is well-known that the solution is provided by the
projection matrix of q-dimensional principal subspace of S(ω). The conclusion of the theorem
follows.

C Proofs of Main Results

In this section, we proof the main result on Theorem 3.3. The proofs of Theorem 4.1 and Theorem
4.3 are deferred to the Supplementary Material.

C.1 Proof for Theorem 3.3

In order to prove Theorem 3.3, we first define the complex valued sub-Gaussian random variable.

Definition C.1. A complex random variable Z = X + iY is said sub-Gaussian (resp. sub-
exponential ) if |Z| is sub-Gaussian (resp. sub-exponential). A complex random vector Z = X+iY
is called sub-Gaussian (resp. sub-exponential) if for all v ∈ Cd, v†Z is sub-Gaussian (resp. sub-
exponential).

We next describe lemmas on the concentration properties for the cross-covariance matrices. The
following lemma shows the decaying rate of cross-covariance matrices.

Lemma C.2. There exist constants c3 and c4 which only depend on c1, c2 and γ2, such that for
all t ∈ Z and all ω ∈ [0, 1),

‖Rte
−i2πωt + R−te

i2πωt‖2 ≤ c3e−c4t
γ1
.
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We defer the proof to Section G.3 in the Supplementary Material.
Note that a direct consequence of Lemma C.2 is that the series {Rt}t∈Z is absolutely summable,

and for all ω ∈ [0, 1), S(ω) is well-defined. Moreover, as a function of ω, the smoothness of S(ω) is
intimately related to the decay pattern of {Rt}t∈Z.

Lemma C.3. There exists a constant c5 only depending on c1, c2, γ1 and γ2 such that for all ω
and ω̃ in [0, 1), we have ‖S(ω̃)− S(ω)‖2 ≤ c5|ω̃ − ω|.

We defer the proof to Section G.4 in the Supplementary Material.
The above lemma will be used to prove Theorem 4.3.
We now proceed to the estimation procedure for the covariance matrix function Ru and the

spectral density matrix S(ω). Recall the estimators R̂t and Ŝ(ω) in (3.1) and (3.2). At first glance
of (3.2), the scaling of log T for the number of estimates of Ru we use seems counter-intuitive. We
will provide extensive explanations and intuitions in the following proofs and remarks. We have
the following proposition.

Proposition C.4. Recall that γ is defined via 1/γ = 1/γ1 + 2/γ2 and N(t, T ) is the number of
the samples we use in (3.1). There exist constant C1, C2, C3, C4 and V which only depend on c1,
c2, γ1 and γ2 such that for all t ∈ Z, v ∈ Sd−1(C) and λ > 1/(N(t, T ) + 1),

P
(
|v†
(
R̂t −Rt

)
v| ≥ λ

)
≤ (N(t, T ) + 1) exp

(
−(N(t, T ) + 1)γ λγ

C1

)
+ exp

(
− (N(t, T ) + 1)2 λ2

C2(1 + (N(t, T ) + 1)V )

)
+ exp

(
−(N(t, T ) + 1)λ2

C3
exp

(
(N(t, T ) + 1)γ(1−γ) λγ(1−γ)

C4 (log (N(t, T ) + 1)λ)γ

))
.

Proof. Define
Y t
v(k) = v†X(k+1)t+kX

†
kt+kv − E[v†X(k+1)t+kX

†
kt+kv],

which is a one-dimensional centered stationary process. Then by the definition of R̂t we have

v†
(
R̂t −Rt

)
v =

1

N(t, T ) + 1

N(t,T )∑
k=0

Y t
v(k).

We first note that by Lemma C.2, we have

|E[v†X(k+1)t+kX
†
kt+kv]| ≤ ‖Rt‖2 ≤

8
√

2

γ2
,

where the upper bound doesn’t depend on t or v. We check readily that for all n ≥ 1, we have
αY t

v
(n) ≤ αX(n(t+ 1) + 1), so by Assumption 2, for all u ≥ 1,

αY t
v
(u) ≤ e−c1uγ1 . (C.1)

On the other hand, by Assumption 3 and Lemma G.1, there exist c′2 which only depends on c2
such that for all v ∈ Sd−1(C), t ∈ Z, k ∈ {1, 2, · · · , N(t, T )} and λ ≥ 0, we have

P(|Y t
v(k)− E[Y t

v(k)]| ≥ λ) ≤ 2e−c
′
2λ
γ2/2

. (C.2)
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Finally, in order to apply Theorem 1 in Merlevède et al. (2011), we first define

V t
v = sup

M≥1
sup
k>0

Var(ϕM (Y t
v(k))) + 2

∑
j>k

|Cov(ϕM (Y t
v(k)), ϕM (Y t

v(j)))|

= sup
M≥1

Var(ϕM (Y t
v(0))) + 2

∑
j>0

|Cov(ϕM (Y t
v(0)), ϕM (Y t

v(j)))|,

where ϕM (x) = max(min(x,M),−M) and in the second equality we used the stationarity of Y t
v .

Combining (C.1) with (C.2), by applying Theorem 1 in Merlevède et al. (2011), we can readily find
a positive constant V such that V ≥ V t

v for all v ∈ Sd−1(C) and t ∈ Z. That theorem also implies
that there thus exist constants C1, · · · , C4, depending only on c, γ1 and γ2, such that for all T and
λ > 1/(N(t, T ) + 1), we have the desired inequality. Note that the condition λ > 1/(N(t, T ) + 1)
guarantees that the term (log((N(t, T ) + 1)λ))1/2 is well-defined.

With the preparation above, we can start proving Theorem 3.3.

Proof for Theorem 3.3. We simply write the number of cross-covariance M(T ) as M in the proof.
We start with the ε-net argument. It can be readily proved that in order to cover Sd−1(C)∩B0(s

∗)
using balls of radisu 1/2, we need only

(
d
s∗

)
6s
∗

points. The set consisting of these points will be
denoted N1/2 and is called a 1/2-net for Sd−1(C)∩B0(s

∗). There exists a universal constant C such
that for all Hermitian matrices A,

‖A‖op,s∗ ≤ C max
v∈N1/2

|v†Av|. (C.3)

We can thus replace ‖ŜM (ω)−S(ω)‖op,s∗ by maxv∈N1/2
|v†(ŜM (ω)−S(ω))v| at a cost of adding a

constant factor. Assume that the cutoff value is M . Thus, for λ ≥ 0, we have R̂t = 0 for t > M or
t < M . Then by union bound, we get

P
(
‖ŜM (ω)− S(ω)‖op,s∗ ≥ Cλ

)
≤

∑
v∈N1/2

P
(
|v†
(
ŜM (ω)− S(ω)

)
v| ≥ λ

)

≤
(
d

s∗

)
6s
∗
P

∣∣∣∣ M∑
t=−M

v†
(
R̂t −Rt

)
ve−i2πωt

∣∣∣∣+

∣∣∣∣ ∑
|t|>M

v†Rtve
−i2πωt

∣∣∣∣ ≥ λ


≤
(
d

s∗

)
6s
∗

P

(∣∣∣∣ M∑
t=−M

v†
(
R̂t −Rt

)
ve−i2πωt

∣∣∣∣ ≥ λ

2

)
+ P

∣∣∣∣ ∑
|t|>M

v†Rtve
−i2πωt

∣∣∣∣ ≥ λ

2

 ,

(C.4)

where on the second line v is an arbitrary vector in Sd−1. We will study the two terms seperately
and start with the second term which corresponds to the population tail behaviour of the auto-
covariance matrices. By applying Lemma C.2 and noticing that in Assumption 2 we assume γ1 ≥ 1,
we have ∣∣∣∣ ∑

|t|>M

v†Rtve
−i2πωt

∣∣∣∣ ≤2
∑
t>M

‖Rte
−i2πωt + R−te

i2πωt‖2

≤2c3
∑
t>M

e−c4t
γ1 ≤ 2c3e

−c4M .

(C.5)
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We then turn to the first term and distribute the mass equality among the terms:

P

(
M∑

t=−M
|v†
(
R̂t −Rt

)
v| ≥ λ

2

)
≤

M∑
t=−M

P
(
|v†(R̂t −Rt)v| ≥

λ

2(2M + 1)

)
. (C.6)

The union bound combined with this observation in (C.4) yields

M∑
t=−M

(
d

s∗

)
6s
∗
P
(
|v†(R̂t −Rt)v| ≥

λ

2(2M + 1)

)
≤2(I + II + III), (C.7)

where

I =

(
d

s∗

)
6s
∗
M∑
t=0

(N(t, T ) + 1) exp

(
−(N(t, T ) + 1)γλγ(4M + 2)−γ

C1

)
,

II =

(
d

s∗

)
6s
∗
M∑
t=0

exp

(
−(N(t, T ) + 1)2λ2(4M + 2)−2

C2(1 + (N(t, T ) + 1)V )

)
,

III =

(
d

s∗

)
6s
∗
M∑
t=0

exp

(
−(N(t, T ) + 1)λ2

C3
exp

(
(N(t, T ) + 1)γ(1−γ) λγ(1−γ)

C4 (log (N(t, T ) + 1)λ)γ (4M + 2)λ(1−λ)

))
.

We are going to analyze and provide concentration upper bounds for each of these three terms.

• For term I, note that for all t ∈ {0, 1, · · · ,M} we have

T

M
≤ N(t, T ) + 1 ≤ T + 1, (C.8)

by plugging these two bounds into the expression of I we find the following upper bound

I ≤ c1(6d)s
∗
TM exp

(
− T γλγ

C̃1M2γ

)
,

where c1 is a universal constant and C̃1 is a constant only depends on the c1, c2, γ1 and γ2. If
we set the right hand side of the above inequality to be ε, we reversely solve λ̃(I) which gives

λ(I) =
(− log ε+ s∗ log d+ log(TM))1/γ(M)2

T
.

• For term II, again by using (C.8), we have

II ≤ c2(6d)s
∗
M exp

(
− Tλ2

C̃2M3

)
,

where c2 is a universal constant and C̃2 is a constant only depends on γ1 and γ2. Again by
setting the right hand side to be ε and assume that logM ≤ c · s log d where c is a universal
constant, we solve for λ(II) which gives

λ(II) ≤
√
M3(− log ε+ s∗ log d+ logM)

T
.
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• For term III, we simply observe that the inner exponential term is greater or equal to 1. As
a result, II ≥ III asymptotically. Therefore, we only need to consider the influence of II.

Putting all the three pieces together, since there exists a universal constant c such that for all T ,
s∗ and d satisfying the scaling M(s∗ log d)2/γ−1 ≤ T ≤ d, we have max

{
λ(I), λ(II), λ(III)

}
≤ cλ(II).

It means that the rate given by the first term of (C.4) is λ(II). Let ε = 1/ds
∗

and we can see that
the rate is

CR1 = M3/2

√
s∗ log d

T
(C.9)

Observe that the rate given by the second term of (C.4) is specified in (C.5), which is CR2 = e−c4M .
The final rate should be the bigger one of CR1 and CR2. We can see that with the increasement
of M , CR1 increases and CR2 decreases. When M = OP (1), CR2 does not converge and when
T 1/3/M = OP (1), CR1 does not converge, When M → ∞ and M/T 1/3 → 0, the estimator
converges under our scaling and the rate is CR1 ∨ CR2, which completes our proof for the rate of
‖ · ‖op,s∗-norm. The proof for the convergence rate in ‖ · ‖∞,∞-norm is the same as the previous
proof. We only need to change the cut-off step in (C.4) into the following argument. Define the set
V = {e1, . . . , ed}, where ej is the j-th canonical basis of Rd.

P
(
‖ŜM (ω)− S(ω)‖∞,∞ ≥ Cλ

)
≤
∑

u,v∈V
P
(
|u†
(
ŜM (ω)− S(ω)

)
v| ≥ λ

)

≤d26s∗P
(∣∣∣ M∑

t=−M
u†
(
R̂t −Rt

)
ve−i2πωt

∣∣∣+
∣∣∣ ∑
|t|>M

u†Rtve
−i2πωt

∣∣∣ ≥ λ)

≤d26s∗
(
P
(∣∣∣ M∑

t=−M
u†
(
R̂t −Rt

)
ve−i2πωt

∣∣∣ ≥ λ

2

)
+ P

(∣∣∣ ∑
|t|>M

u†Rtve
−i2πωt

∣∣∣ ≥ λ

2

))
.

(C.10)

The remaining part of the proof follows the same way.
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Supplementary material to

Sparse Principal Component Analysis in Frequency Domain for
Time Series

Junwei Lu∗, Yichen Chen†, Xiuneng Zhu‡, Fang Han§, and Han Liu¶

Abstract

This document contains the supplementary material to the paper “Sparse Principal
Component Analysis in Frequency Domain for Time Series”. In Section D, we prove
Theorem 4.1. In Section E, we prove Theorem 4.2. In Section F, we prove Theorem 4.3.
In Section G, we prove auxiliary lemmas for the proof of Theorem 3.3.

D Proof of Theorem 4.1

In this section we present the proof for Theorem 4.1. The proof is almost same as the one of
Theorem 4.3 in Wang et al. (2014) except that in Theorem 4.1, all matrices take values in C. Here
we are dealing with Hermitian complex matrices instead of symmetric real matrices, but we expect
all the important properties and results stay unchanged. We will go over some of them and point
out the difference between these two settings.

First, we define the distance of two complex linear spaces. Assume that we have two subspaces
U and U ′ which are both q-dimensional. We use Π and Π′ to denote the canonical projections onto
these two spaces which are Hermitian matrices. Then we define the distance between these two
subspaces as

D(U ,U ′) = ‖Π−Π′‖F.

We will use u1, · · · ,uq to denote a set of orthonormal basis of U and u′1, · · · ,u′q to denote that
of U ′. Note that in contrast to the canonical projections corresponding to these subspaces, these
orthonormal basis are not unique. However, if we use U to denote (u1| · · · |uq), then Π = UU†.
We also denote the orthogonal projection matrix U′⊥ = I−U′U′†.

Lemma D.1. We have the following identity on the distance of two subspaces:

D(U ,U ′) =
√

2‖U†U′⊥‖F =
√

2
(
q − ‖U†U′‖2F

)1/2
≤
√

2q.

Proof. For the first two equalities, we can easily check by calculation. By definition, we have

D(U ,U ′)2 = tr
(
(UU† −U′U′†)(UU† −U′U′†)†

)
= 2q − 2 tr(U†U′U′†U) = 2q − 2‖U†U′‖2F.
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Similarly we have,

2‖U†U′⊥‖2F = 2 tr
(
U†(I−U′U′†)(I−U′U′†)U

)
= 2q − 2 tr(U†U′U′†U) = 2q − 2‖U†U′‖2F.

The last inequality follows trivially from the positiveness of the Frobenius norm.

The ADMM algorithm for sparse PCA problem is initially proposed in Vu et al. (2013) in the
real number setting. We next check the curvature lemma first proposed there for real case.

Lemma D.2. Let A ∈ Cd×d be a Hermitian matrix and E be the projection matrix that projects
vectors onto the principal q-dimensional subspace of A. If δA = λq(A)− λq+1(A), then

δA
2
‖E− F‖2F ≤ 〈A,E− F〉 ,

where F satisfies 0 � F � I and tr(F) = q.

Proof. If A is not a positive definite matrix, there exists a constant ρ > 0 that A + ρI � 0.
Since 〈A,E− F〉 = 〈A + ρI,E− F〉 and A + ρI has the same eigengap as A, we can just prove

the case that A is positive definite. We suppose the Hermitian matrix A =
∑d

j=1 λjuju
†
j , where

λ1 ≥ . . . ≥ λd > 0 are eigenvalues and {uj}dj=1 are the eigenvectors. So E =
∑q

j=1 λjuju
†
j . We first

have

1

2
‖E− F‖2F =

1

2

(
‖E‖2F − 2〈E,F〉+ ‖F‖2F

)
≤ 1

2

(
d− 2〈E,F〉+ tr(R)

)
= d− 〈E,F〉.

On the other side, we have

〈A,E− F〉 = 〈EA, I− F〉+ 〈(I−E)A,F〉 = 〈
q∑
j=1

λjuju
†
j , I− F〉+ 〈

d∑
j=q+1

λjuju
†
j ,F〉

≥ λq〈E, I− F〉 − λq+1〈I−E,F〉 = δA(d− 〈E,F〉).

Therefore, the lemma is proved.

With the help of the above lemma, we can directly bound the distance between two principal
subspaces as it is in Vu et al. (2013). The following sin Θ theorem summarizes this fact and we
omit the proof.

Lemma D.3. Let A and B be Hermitian matrices and MA and MB be their respective q-
dimensional principal subspaces. If δA,B = (λq(A)− λq+1(A)) ∧ (λq(B)− λq+1(B)), then

D(MA,MB) ≤
√

2

2δA,B
‖A−B‖F.

As explained in Vu et al. (2013), ADMM for sparse principal subspace problems relies on convex
relaxation of the constraint. The following lemma is the complex counterpart.

Lemma D.4. The complex q-fantope Fq is the convex hull of the set
{
VV†|V†V = Iq

}
.
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Proof. Actually we can prove that the latter is the set of all extremal points of Fq. The proof is
similar to Theorem 3 in Overton and Womersley (1992) in terms of the real case. First, we consider
the simplex

S =
{

(λ1, . . . , λd)|
d∑
j=1

λj = q, λj ≥ 0,∀1 ≤ j ≤ d
}
.

It is easy to know that the extremal points set is

S0 =
{

(λ1, . . . , λd)|#{λj = 1} = q,#{λj = 0} = d− q
}
.

Therefore, the extremal points set of Fq is the subset of the set
{
VV†|V†V = Iq

}
. On the other

hand, the compactness of Fq implies that the extremal points set is not empty. Therefore, there
must exists at least one V0V

†
0 ∈

{
VV†|V†V = Iq

}
being the extremal point. Finally, it is trivial

to see that if V0V
†
0 is the extremal point, for any Hermitian matrix U, the matrix UV0V

†
0U
† is

also the extremal point. In conclusion, we prove that
{
VV†|V†V = Iq

}
is the extremal points set

of Fq.

Our final piece of lemma is the following statistical rate of convergence in infinity norm. Com-
bined with all the deterministic results developed above we can prove Theorem 4.1.

Proof of Theorem 4.1. Define Θ̃(t) = −ρ·sign(Π
(t)−Φ

(t)
), recalling that Π

(t)
and Φ

(t)
for 1 ≤ t ≤ R

are defined in Algorithm A. In Equation (C.19) of Wang et al. (2014), as long as Lemmas D.1 -
D.4 are satisfied, it can be proved that when ρ ≥ ‖Ŝ(0)− S(0)‖∞,∞, we have for any 1 ≤ t ≤ R,

‖Π∗ −Π
(t)‖F ≤

4s∗ρ

λq(S(0))− λq+1(S(0))
+

√
β‖Π∗‖F + ‖Θ̃(t)‖F/

√
β√

λq(S(0))− λq+1(S(0))

1√
t
, (D.1)

where in the current context Π∗ is the q-dimensional principal subspace of S(0) and Π
(t)

is the
output we obtain at step t from ADMM algorithm associated to Ŝ(0). As a projection matrix on a
q-dimensional subspace, ‖Π∗‖F =

√
q. On the other hand, by the definition of Θ̃(t), ‖Θ̃(t)‖F ≤ ρd.

By Theorem 3.3, it suffices to choose ρ = C(log T )3/2
√

log d/T to guarantee (D.1) with probability
at least 1− 1/d. Plug ρ into (D.1) and choose β to minimize it, we obtain the desired bound.

E Proof of Theorem 4.2

Proof. Let U init be the q-leading eigenspace of Π
(R)

, since

R ≥
(
qd2(log T )3 log d

T

)1/2

·

(
A− C(log T )3/2

√
log d

T

)−1
,

by Theorem 4.1, we have

D(U init,U∗) ≤ A = min

{√
2η/4,

√
qη(1− η1/2)/2

}
, (E.1)
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According to Theorem 4.2 in Wang et al. (2014), we can obtain

D(U (R+t),U∗) ≤ ηt/4D(U init,U∗) + 8
√

2η−1/2
1− η1/4

1− ηt/4
‖Ŝ(0)− S(0)‖2,2ŝ

λq(S(0))− λq+1(S(0))
.

Plugging in the concentration result on Ŝ(ω) towards S(ω), i.e., Theorem 3.3, we have the desired
result since

R̃ ≥ 4(log(1/η))−1 log

(
C(η/8)1/2(log T )3/2

√
s∗ log d

T

)
.

To analyze the CSOAP, we prove by induction. Suppose for k− 1, Û((k− 1)/N) satisfies (4.6) that

D(Û((k − 1)/N),U∗((k − 1)/N)) ≤ C(log T )3/2
√
qs∗(q ∨ log d)

T
.

By Lemma C.3, we have

D(U∗(k/N),U∗((k − 1)/N)) ≤ √q‖S(ω̃)− S(ω)‖2 ≤ c5
√
q/N

for 0 ≤ k ≤ N . Therefore, since N ≥ C(log T )−3/2q−1(s∗ log d/T )−1/2, we have

D(Û((k − 1)/N),U∗(k/N))

≤ D(Û((k − 1)/N),U∗((k − 1)/N)) +D(Û((k − 1)/N),U∗((k − 1)/N)) ≤ A

for sufficiently large T . Therefore, Û((k − 1)/N) satisfies the initialization condition in (E.1) and
following the same proof as before, we have

D(Û(k/N),U∗(k/N)) ≤ C(log T )3/2
√
qs∗(q ∨ log d)

T
,

which completes our proof.

F Proof of Theorem 4.3

Proof. We first note that∣∣∣∣E [‖Xt −Xb
t ‖22
]
− E

[
‖Xt −X b̃

t ‖22
] ∣∣∣∣

≤
∫ 1

0
| tr
(

(I−Π(ω))S(ω)(I−Π(ω))†)
)
− tr

(
(I− Π̃(ω))S(ω)(I− Π̃(ω))†)

)
|dω

=

∫ 1

0
| tr ((I−Π(ω))S(ω))− tr

(
(I− 2Π̃(ω) + Π̃(ω)Π̃(ω))S(ω)

)
|dω

≤
∫ 1

0
| tr
(

(Π(ω)− Π̃(ω))S(ω)
)
|+ | tr

(
(Π̃(ω)(I− Π̃(ω))S(ω)

)
|dω,

(F.1)

where Π(ω) is the true principal subspace of S(ω) and Π̃(ω) is the estimated one derived from
the Fourier transform of b̃(t) and c̃(t) defined in (4.3). The first inequality is due to equation
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(B.2) and we use the fact that tr(AB) = tr(BA) in the equality step. We then give the bound of

tr
(

(Π(ω)− Π̃(ω))S(ω)
)

. We use ‖A‖F,s to denote the s-sparse Frobenius norm, which is defined

to be the maximal Frobenius norm taking arbitrary s rows and s columns of A. As Π(ω) and Π̃(ω)
are ŝ-sparse, the matrix Π(ω)− Π̃(ω) is 2ŝ-sparse. This entails

tr
(

(Π(ω)− Π̃(ω))S(ω)
)
≤ ‖Π(ω)− Π̃(ω)‖F‖S(ω)‖F,2̂s ≤ C

√
qs∗‖Π(ω)− Π̃(ω)‖F‖S(ω)‖2,2ŝ,

(F.2)
where the last inequality is due to the assumption that ŝ ≤ qs∗. As S(ω) is s∗ sparse, we have
‖S(ω)‖2,2ŝ = ‖S(ω)‖2. Combining that ‖S(ω)‖2 is bounded by a constant, we have∫ 1

0
| tr
(

(Π(ω)− Π̃(ω))S(ω)
)
| ≤ C

√
qs∗

N−1∑
k=0

∫ (k+1)/N

k/N
‖Π(ω)− Π̃(ω)‖Fdω

≤ C
√
qs∗

N−1∑
k=0

∫ (k+1)/N

k/N
‖Π(ω)−Π(

k

N
)‖F + ‖Π(

k

N
)− Π̂(

k

N
)‖F

+ ‖Π̂(
k

N
)− Π̂(ω)‖F + ‖Π̂(ω)− Π̃(ω)‖Fdω.

(F.3)

Here, Π̂ is the estimated principal subspace using the Fourier transform of b̂(t) and ĉ(t) defined in
Section 4.1. By using Davis-Kahan sin θ theorem and Lemma C.3, we can bound the first term as

‖Π(ω)−Π(
k

N
)‖F ≤

√
2‖ sin Θ(B(ω),B(

k

N
))‖F ≤ c

√
s‖S(ω)− S(

k

N
)‖2 ≤ c

√
s|ω − k

N
| ≤ c

√
s

N
.

where B(ω) are the columns of eigenvectors of S(ω). By Theorem 4.2, we can bound the second
term as

‖Π(
k

N
)− Π̂(

k

N
)‖F ≤ (log T )3/2q

√
s∗ log d

T
. (F.4)

To bound the third term, we observe that

‖Π̂(
k

N
)−Π̂(ω)‖2F = ‖B̂(

k

N
)B̂(

k

N
)†−B̂(ω)B̂(ω)†‖2F ≤ q

q∑
i=1

‖v̂i(
k

N
)v̂i(

k

N
)†−v̂i(ω)v̂i(ω)†‖2F, (F.5)

where v̂i(ω) is the i-th column of B̂(ω) and B̂(ω) is the Fourier transform of b̂(t) and ĉ(t) computed
in Section 4.1. By some calculations and tr(AB) = tr(BA) , we have for any i = 1, . . . , q,

‖v̂i(
k

N
)v̂i(

k

N
)† − v̂i(ω)v̂i(ω)†‖2F = tr

((
v̂i(

k

N
)v̂i(

k

N
)† − v̂i(ω)v̂i(ω)†

)(
v̂i(

k

N
)v̂i(

k

N
)† − v̂i(ω)v̂i(ω)†

))
= tr

(
v̂i(

k

N
)†v̂i(

k

N
)v̂i(

k

N
)†v̂i(

k

N
)− v̂i(

k

N
)†v̂i(ω)v̂i(ω)†v̂i(

k

N
)

+ v̂i(ω)†v̂i(ω)v̂i(ω)†v̂i(ω)− v̂i(ω)†v̂i(
k

N
)v̂i(

k

N
)†v̂i(ω)

)
.

We can therefore further get the equality that

‖v̂i(
k

N
)v̂i(

k

N
)† − v̂i(ω)v̂i(ω)†‖2F = tr

((
v̂i(

k

N
)†v̂i(

k

N
) + v̂i(

k

N
)†v̂i(ω)

)(
v̂i(

k

N
)† − v̂i(ω)†

)
v̂i(

k

N
)

+

(
v̂i(ω)†v̂i(ω) + v̂i(ω)†v̂i(

k

N
)

)(
v̂i(

k

N
)† − v̂i(ω)†

)
v̂i(ω)

)
.
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Combining with the observation that ‖v̂i(ω)‖2 are bounded by some constant and ‖v̂i( kN )† −
v̂i(ω)†‖2 ≤ ‖v̂i( kN )†−v̂i(

k+1
N )†‖2, we can bound

(
v̂i(

k
N )†v̂i(

k
N ) + v̂i(

k
N )†v̂i(ω)

) (
v̂i(

k
N )† − v̂i(ω)†

)
v̂i(

k
N )

by c‖v̂i( kN )− v̂i(
k+1
N )‖2 for some constant c. As a result,

‖v̂i(
k

N
)v̂i(

k

N
)† − v̂i(ω)v̂i(ω)†‖2F ≤ C‖v̂i(

k

N
)− v̂i(

k + 1

N
)‖2.

Substituting the above inequality into equation (F.5), we have

‖Π̂(
k

N
)− Π̂(ω)‖2F ≤ Cq

q∑
i=1

‖v̂i(
k

N
)− v̂i(

k + 1

N
)‖2. (F.6)

We then need to bound Cq
∑q

i=1 ‖v̂i(
k
N )− v̂i(

k+1
N )‖2. We know that by triangle inequalities

‖v̂i(
k

N
)− v̂i(

k + 1

N
)‖2 ≤ ‖v̂i(

k

N
)− vi(

k

N
)‖2 + ‖vi(

k

N
)− vi(

k + 1

N
)‖2 + ‖v̂i(

k + 1

N
)− vi(

k + 1

N
)‖2.

(F.7)
Note that

‖v̂i(
k

N
)− vi(

k

N
)‖2 ≤ ‖v̂i(

k

N
)v̂i(

k

N
)† − vi(

k

N
)vi(

k

N
)†‖2 ≤ C(log T )3/2

√
s∗ log d

T
.

by Theorem 4.2. Then by the assumption that the eigengaps of S(ω) satisfies infω∈[0,1) λi(S(ω))−
λi+1(S(ω)) > δ > 0 for all i = 1, ..., q, we can use Davis-Kahan sin θ theorem and Lemma C.3 to
obtain

‖vi(
k

N
)− vi(

k + 1

N
)‖2 ≤ ‖vi(

k

N
)vi(

k

N
)† − vi(

k + 1

N
)vi(

k + 1

N
)†‖2 ≤ c‖S(ω)− S(

k

N
)‖2 ≤

c

N

So as long as N satisfies

N ≥ C(log T )−3/2
(
s∗ log d

T

)−1/2
,

we can bound all the three terms in (F.7), which gives us

‖Π̂(
k

N
)− Π̂(ω)‖2F ≤ C(log T )3/2q2

√
s∗ log d

T
, (F.8)

by (F.6). Now, we are ready to bound the fourth term in (F.3). Note that

‖Π̂(ω)− Π̃(ω)‖F =

√√√√∑
i∈Sω

∑
j∈Sω

(
q∑

k=1

B̂ik(ω)B̂jk(ω)− B̃ik(ω)B̃jk(ω)

)2

,

where Sω is the support of Π̂(ω). Recall that B̂ik(ω) is continuously differentiable. So the partial
sum B̃ik(ω) =

∑N
t=−N b̂ik(t)e

−i2πωt satisfies

max
ω
|B̂ik(ω)− B̃ik(ω)| ≤ C√

N
,
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by the property of the Fourier transform. Therefore, we have

‖Π̂(ω)− Π̃(ω)‖F ≤ C
ŝq√
N

(F.9)

What remains is to bound the second term of (F.1). We have

| tr
(

(Π̃(ω)(I− Π̃(ω))S(ω)
)
| ≤ C

√
qs∗‖B̃(ω)(I−B̃(ω)T B̃(ω))B̃(ω)‖F ≤ C

√
qs∗‖I−B̃(ω)T B̃(ω)‖F

where the first inequality use the same argument for (F.2). Similarly, we have ‖I−B̃(ω)T B̃(ω)‖F ≤
‖I − B̂(ω)T B̂(ω)‖F + ‖I − B̃(ω)T B̃(ω)‖F. Note that the later term has been bounded before. To
bound the first term, we just need to consider the difference caused by each entry and then to add
them together, which is given by

‖I− B̂(ω)T B̂(ω)‖F ≤ C(log T )3/2d

√
s∗ log d

T
. (F.10)

Combining all the bounds together, we can see that when N satisfies

N ≥ C(log T )−3/2
(
s∗ log d

T

)−1/2
, (F.11)

we have ∣∣∣E [‖Xt −Xb
t ‖2
]
− E

[
‖Xt −X b̃

t ‖2
] ∣∣∣ = OP

(
(log T )3/2q3/2s∗

√
log d

T

)
, (F.12)

which completes our proof.

G Auxiliary Lemmas

G.1 Complex Sub-Gaussian Random Variables

Notice that Definition C.1 is consistent with Assumption 3 in the sense that X0 is complex sub-
Gaussian random variable under Assumption 3. The following lemma shows a property of the
product of two sub-Gaussian random variables.

Lemma G.1. If X and Y are two complex sub-Gaussian random variables, then XY is a complex
sub-exponential random variable.

Proof. We first treat the case where X and Y are real-valued centered random variables. If we use
m to denote E[XY ], we can write, for t large enough,

P(|XY −m| > t) = P(XY > m+ t) + P(XY < m− t) ≤ 2P(|XY | > t−m),

the inequality is true because t > m. Since X and Y are centered and sub-Gaussian, there exists
a, b > 0 such that for all t ≥ 0 we have P(|X| > t) ≤ 2e−at

2
and P(|Y | > t) ≤ 2e−bt

2
. Without loss

of generality, we assume that a ≤ b, then for all t large enough, we have

P(|XY −m| > t) ≤ 2(P(|X| >
√
t−m) + P(|Y | >

√
t−m))

≤ 4e−a(t−m) = 4eame−at.
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There thus exists a constant c > 0 and t0 > 0 such that for all t > t0, P(|XY −m| > t) ≤ e−ct,
yielding the fact that XY is sub-exponential.

We now turn to the case where X and Y are not centered. In this case, XY can be written
as X̄Ȳ +mY X̄ +mX Ȳ +mXmY , where mX and mY are means of X and Y , and X̄ = X −mX ,
Ȳ = Y − mY . Now that X̄ and Ȳ are centered, we can apply the first part of the proof and
the fact that finite linear combinations of sub-exponential random variables are sub-exponential to
conclude that XY is sub-exponential. Finally, the case where X and Y are complex-valued follows
directly from the definition of sub-Gaussianality and sub-exponentiality for complex-valued random
variables.

G.2 Auxiliary Lemmas on Variance-Covariance and Spectral Density Matrices

We first state a complex version of Theorem 1 in Rio (1993) which provides us a tool to bound the
covariance by the mixing coefficient of two random variables.

Lemma G.2. Let X and Y be two complex random variables such that |X| and |Y | are square-
integrable. If we denote α to be the mixing coefficient between the σ-algebras generated by X and
Y and Q|X|(·), Q|Y |(·) to be the quantile functions of |X| and |Y |, where Q|X|(1 − u) = inf{t :
P(|X| > t) ≤ u). Assuming that Q|X|Q|Y | is integrable on [0, 1], then

|Cov(X,Y )| ≤ 4
√

2

∫ 2α

0
Q|X|(1− u)Q|Y |(1− u)du.

Proof. We write X = X1 + X2i and Y = Y1 + Y2i where X1, X2, Y1, Y2 are real random variables.
Because the covariance actually defines a Hermitian product on the space of random variables, we
can write

Cov(X,Y ) = Cov(X1, Y1) + Cov(X2, Y2) + i(Cov(X1, Y2)− Cov(X2, Y1)).

In the following we use cj,k to denote |Cov(Xj , Yk)|. Now that Xj and Xk are real random variables.
Let α(Xj , Yk) be the α-mixing coefficient between Xj , Yk and we can apply Theorem 1 in Rio (1993)
and get

cj,k ≤ 2

∫ 2α(Xj ,Yk)

0
Q|Xj |(1− u)Q|Yk|(1− u)du, j = 1, 2, k = 1, 2.

We then note that α(Xj , Yk) ≤ α, because the σ-algebra generated by X (resp. Y ) contains that
generated by Xj (resp. Yk). We also have Q|Xj |(u) ≤ Q|X|(u) (resp. Q|Yk|(u) ≤ Q|Y |(u)) for any
u ∈ [0, 1] because |Xj | ≤ |X| (resp. |Yk| ≤ |Y |). We thus have

cj,k ≤ 2

∫ 2α

0
Q|X|(1− u)Q|Y |(1− u)du, j = 1, 2, k = 1, 2. (G.1)

Lastly we write

|Cov(X,Y )|2 = (c1,1 + c2,2)
2 + (c1,2 − c2,1)2 ≤ 2(c21,1 + c21,2 + c22,1 + c22,2),

and plug (G.1) into the above equation we obtain the desired result.

8



G.3 Proof of Lemma C.2

As we’ve already noted, R†t = R−t so the matrix Rte
−i2πωt + R−te

i2πωt is Hermitian. In order to
bound the spectral norm of this matrix we start by writing, for all v ∈ Sd−1(C),

|v†(Rte
−i2πωt + R−te

i2πωt)v| =|E[v†XtX
†
0v]e−i2πωt + E[v†X0X

†
t v]ei2πωt|

≤|Cov(v†X0,v
†Xt)|+ |Cov(v†Xt,v

†X0)|.
(G.2)

Note that by Assumption 3, F|v†Xu|(λ) ≥ 1 − 2e−γ2λ
2

where F stands for cumulative distribution

function. This yields the following upper bound on the quantile function of |v†Xu|:

Q|v†Xu|(x) ≤
(
− 1

c2
log

1− x
2

)1/γ2

.

We hence have, by applying Lemma G.2 and Assumption 2,

|Cov(v†X0,v
†Xt)| ≤ 4

√
2

∫ 2e−c1t
γ1

0

(
− 1

c1
log

x

2

)2/γ2

dx ≤ 8
√

2e−c1t
γ1
P (ctγ1), (G.3)

where P is a polynomial of degree bigger than 2/γ2. Since we have the same bound on the second
term of the right-hand side of (G.2), it suffices to choose c3 large enough and c4 small enough to
obtain the desired result.

G.4 Proof of Lemma C.3

We first write, using the definition of S(ω),

‖S(ω̃)− S(ω)‖2 ≤
∑
t≥1
‖Rt(e

−i2πω̃t − e−i2πωt) + R−t(e
i2πω̃t − ei2πωt)‖2.

By using the same technique as used in the proof of Lemma C.2, we have

‖Rt(e
−i2πω̃t − e−i2πωt) + R−t(e

i2πω̃t − ei2πωt)‖2 ≤ 2π|ω̃ − ω|c3te−c4t
γ1
,

and by setting c5 equal to 2πc3
∑

t≥1 te
−c4tγ1 we obtain the desired inequality.
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